Chứng minh rằng:
\(a^4\)+\(b^4\)+\(c^4\)+\(d^4\)\(\ge\)2(\(a^2b^2\)+\(c^2d^2\))\(\ge\)4abcd
Bài 2: Cho a,b,c,d∈ R. Chứng minh rằng a2+b2 ≥ 2ab (1). Áp dụng chứng minh các bất đẳng thức sau:
a) a4+b4+c4+d4 ≥ 4abcd
b) (a2+1)(b2+1)(c2+1) ≥ 8abc
c) (a2+4)(b2+4)(c2+4)(d2+4) ≥ 256abcd
a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .
-> Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)
- Cộng 2 bpt lại ta được :
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)
- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)
=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)
b, CMTT câu 1 .
- Áp dụng BĐT cauchuy ta được :
\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
- Nhân 3 bpt trên lại ta được :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)
Chứng minh rằng:
a^4 + b^4 + c^4 +d^4\(\ge\)4abcd
Áp dụng BĐT Cô-si ta có :
\(a^4+b^4\ge2a^2b^2\)
\(c^4+d^4\ge2c^2d^2\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
Mà \(2a^2b^2+2c^2d^2\ge2\sqrt{2ab.2cd}=4abcd\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Cho a, b, c, d là các số bất kì. Chứng minh rằng:
a4+b4+c4+d4 ≥ 4abcd
Áp dụng bất đẳng thức Cô-si cho các số dương \(a^4,b^4,c^4,d^4\), ta có:
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}\)
\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2\cdot2c^2d^2}=2\cdot2\left|abcd\right|=4\left|abcd\right|\ge4abcd\)
Dấu "=" khi a = b = c = d.
Cách khác áp dụng cho 4 số luôn:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\).
Vậy......................
Áp dụng BĐT Cô-si ta có:
a4 + b4 ≥ 2a2b2
c4 + d4 ≥ 2c2d2
⇒ a4 + b4 + c4 + d4 ≥ 2a2b2 + 2c2d2
⇔ VT ≥ 2\(\sqrt{4\text{a}^2b^2c^2d^2}\) = 4abcd = VP
Vậy a4 + b4 + c4 + d4 ≥ 4abcd
Chứng minh rằng : a4 + b4 + c4 + d4 \(\ge\)4abcd
#)Giải :
Áp dụng BĐT Cauchy 2 số :
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\left(đpcm\right)\)
Với mọi a, b, c, d
ta có: \(0\le\left(a^2-b^2\right)^2=a^4-2a^2b^2+b^4\)
=> \(a^4+b^4\ge2a^2b^2\)
tương tự: \(c^4+d^4\ge2c^2d^2\)
\(a^2b^2+c^2d^2\ge2abcd\)
=> \(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2a^2b^2+2c^2d^2=2\left(a^2b^2+c^2d^2\right)\ge4abcd\)
Vậy ta có điều cần phải chứng minh.
Bạn T.Ps sai rồi nha!Nó có dương đâu mà Cauchy
\(a^4+b^4+c^4+d^4\ge4abcd\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^4-2c^2d^2+d^4\right)+\left(2a^2b^2-4abcd+2c^2d^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(a=b=c=d\)
P/S:E ko chắc
Cho ba số thực dương a, b, c thuộc đoạn [-1; 1] thỏa mãn \(1+2abc\ge a^2+b^2+c^2\). Chứng minh rằng :
\(1+2a^2b^2c^2\ge a^4+b^4+c^4\)
Chứng minh a4 + b4 + c4 + d4 \(\ge\) 4abcd
Áp dụng bất đẳng thức cauchy ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)
Vậy \(a^4+b^4+c^4+d^4\ge4abcd\)
Áp dụng BĐT cô-si cho 2 số không âm ta có:
a4+b4\(\ge\)2a2b2
c4+d4\(\ge\)2c2d2
=>a4+b4+c4+d4\(\ge\)2(a2b2+c2d2)(1)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\end{matrix}\right.\)
Áp dụng BĐT coossi cho 2 số không âm ta có:
a2b2+c2d2\(\ge\)2abcd
=>(1) tương đương a4+b4+c4+d4\(\ge\)4abcd
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}ab=cd\\a^2=b^2\\c^2=d^2\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=-b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}-a=b\\c=-d\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}a=b\\c=d\end{matrix}\right.\)
Vậy...
Cho a,b,c,d > 0. Chứng minh \(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\) ≥ \(\frac{a+b+c+d}{3}\)
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)
Tương tự ta có
\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)
Cộng vế với vế:
\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Mong các bạn có thể giúp mik, mik đang cần rất gấp. Cảm ơn các bạn nhiều!
Cho a,b,c là các số dương, chứng minh rằng
\(\dfrac{2a^2}{2b+c}+\dfrac{2b^2}{2a+c}+\dfrac{c^2}{4a+4b}\ge\dfrac{1}{4}\left(2a+2b+c\right)\)
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
1.Chứng minh rằng :
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+b+c+d\)với \(a\ge-1;b\ge-4;c\ge2;d>3\)
2. Chứng minh rằng :
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)với \(a,b,c,d>0\)
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
ta sẽ giết ngươi kí tên dép đờ kiu lờ