Cho 3 số thực dương a, b, c thỏa mãn: abc=1. Chứng minh rằng:
\(\dfrac{a^3}{a^2+2b^2}+\dfrac{b^3}{b^2+2c^2}+\dfrac{c^3}{c^2+2a^2}\ge1\)
cho a, b, c là 3 số thực dương. cmr \(\frac{a^2}{b^2c}+\frac{b^2}{c^2a}+\frac{c^2}{a^2b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Cho ba số thực dương a,b,c thỏa mãn:\(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)
Tìm giá trị nhỏ nhất của:A=\(\dfrac{a^2b^2}{c^3\left(a^2+b^2\right)}+\dfrac{b^2c^2}{a^3\left(b^2+c^2\right)}+\dfrac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
cho các số a,b,c > 0. chứng minh:
1.\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{a+b+c}{3}\)
2.\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
Chứng minh rằng với mọi a, b, c > 0 ta có: \(\frac{a^4}{1+a^2b}+\frac{b^4}{1+b^2c}+\frac{c^4}{1+c^2a}\ge\frac{abc\left(a+b+c\right)}{1+abc}\)
1. Cho a,b,c là các số thực dương thỏa a+b+c=3. Cmr \(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)
2. Cho a,b,c là các số thực dương thỏa \(a^2+b^2+c^2=1\). Cmr: \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\ge\dfrac{3}{4}\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
3.Cho a,b,c là các số thực dương thỏa \(a^2+b^2+c^2=3\). Cmr:\(\sqrt{\dfrac{a^2}{b+b^2+c}}+\sqrt{\dfrac{b^2}{c+c^2+a}}+\sqrt{\dfrac{c^2}{a+a^2+b}}\le3\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)