Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø
https://meet.google.com/bfu-vyru-hhn
https://meet.google.com/bfu-vyru-hhn
Bài 1. Xác định tập hợp A ∩ B, A ∪ B, A \ B, CRAvới:
Bài 2. Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.
Bài 3. Tìm TXĐ hs sau:
Bài 4. Lập BBT và vẽ đồ thị hs sau:
a. y = x2 - 4x + 3
b. y = -x2 +2x - 3
c. y = x2 + 2x
d. y = -2x2 -2
Bài 5. Tìm Parabol y = ax2 - 4x + c, biết rằng Parabol :
Đi qua hai điểm A(1; -2) và B(2; 3).
Có đỉnh I(-2; -2).
Có hoành độ đỉnh là -3 và đi qua điểm P(-2; 1).
Có trục đối xứng là đường thẳng x = 2 và cắt trục hoành tại điểm (3; 0).
Bài 6. Giải các phương trình sau:
Bài 7. Biết X1, X2 là nghiệm của phương trình 5x2 - 7x + 1 = 0. Hãy lập phương trình bậc hai có các nghiệm
Bài 8.
lớp 1 mà có cả √ luôn. thật là tuổi trẻ tài cao
Wow tuổi trẻ tài cao
Lớp 1 bn j ơi bn nhảy cóc lớp ạ
giúp mk vs m.n, HELP ME! THANK YOU.
Câu 1/ Cho hai tập hợp A = {x ∈ R | (2x - x2)(2x2 - 3x -) = 0} và B = {x ∈ R | (2x2 + x)(3x - 12m) = 0}. Với giá trị nào của m thì A = B?
Câu 2/ Cho các tập hợp A = [1 ; +∞), B = {x ∈ R | x2 + 1 = 0} và C = (0;4). Tập (A hợp B) giao C. Có bao nhiêu phần tử số nguyên.
Câu 3/ Cho hai tập hợp A= (m-1 ; 5], B = (3; 2020 - 5m) và A, B khác rỗng. Có bao nhiêu giá trị nguyên của m để A \ B = ∅
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
Cho tập hợp A = {x ∈ R: |3x - 2| ≥ 4} và B = (m; m + 2]. Giá trị của m để A ∩ B = ∅ là:
A. (-∞; - 2 3 ) ∪ [2; +∞)
B. [ - 2 3 ; 0)
C. (-∞; - 2 3 ] ∪ [2; +∞)
D. ( - 2 3 ; 2)
Đáp án: B
3 x - 2 ≥ 4 ⇔ 3 x - 2 ≤ - 4 h o ặ c 3 x - 2 ≥ 4 ⇔ x ≤ - 2 3 h o ặ c x ≥ 2 ⇔ A = ( - ∞ ; - 2 3 ] ∪ [ 2 ; + ∞ ) .
A ∩ B = ∅ ⇒ các phần tử thuộc B thì không thuộc A nên B ⊂ ( - 2 3 ; 2 )
⇒ m ≥ - 2 3 m + 2 < 2 ⇔ m ≥ - 2 3 m < 0 ⇒ m ∈ [ - 2 3 ; 0 ) .
Cho A={x€R/2x-2≥0} B={x€R/9-3x≥0} a) biểu diễn A,B thành khoảng,đoạn ,nửa khoảng b)Tìm A giao B ,A hợp B , A\B,B\A c) Liệt kê các tập hợp con của tập hợp
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.
Cần gấp nha, ai nhanh mk k cho
Cho tập hợp A = {x € R|3x + 2 ≤ 14} và B = [3m + 2; +∞). Tìm m để A∩B ≠Ø.
Nhanh hộ mk cái nha
K cho 3 bn đầu tiên
3x+2≤14⇒3x≤12⇒x≤4⇒A=(−∞;4]B=[3m+2;+∞)A∩B≠∅⇒3m+2≤4⇒3m≤2⇒m≤23Vậym≤23
cái kia là 3/2 nhé a
Cho các tập hợp sau A= \(\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\) và B=\(\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Tìm A \(\cap\) B
\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)
Giải phương trình sau :
\(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)
\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Giải bất phương trình sau :
\(3< n\left(n+1\right)< 31\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)
\(\Rightarrow A\cap B=\left\{2\right\}\)
cho 2 tập hợp A={x\(\in\)R|(x-1)(x-2)(x-4)=0}, B={n\(\in\)N|n là ước của 4}. 2 tập hợp A và B, tập hợp nào là tập con của tập còn lại. 2 tập hợp A và B có bằng nhau không.
Để xác định xem tập hợp A có phải là tập con của tập hợp B hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp A có thuộc tập hợp B hay không. Tương tự, để xác định xem tập hợp B có phải là tập con của tập hợp A hay không, ta cần kiểm tra xem tất cả các phần tử trong tập hợp B có thuộc tập hợp A hay không.
Tập hợp A được xác định bởi điều kiện (x-1)(x-2)(x-4)=0. Điều này có nghĩa là các giá trị của x mà khi thay vào biểu thức (x-1)(x-2)(x-4) thì biểu thức này sẽ bằng 0. Các giá trị này là 1, 2 và 4. Do đó, tập hợp A là {1, 2, 4}.
Tập hợp B được xác định bởi các ước của số 4. Số 4 có các ước là 1, 2 và 4. Do đó, tập hợp B cũng là {1, 2, 4}.
Vì tập hợp A và tập hợp B đều chứa các phần tử 1, 2 và 4, nên ta có thể kết luận rằng tập hợp A là tập con của tập hợp B và tập hợp B là tập con của tập hợp A.
Vậy, tập hợp A và tập hợp B là bằng nhau.
Cho tập hợp A = {x ∈ R | x 2 − 4x + m + 2 = 0} và tập hợp B = {1; 2}. Tìm m để A ∩ B = ∅.
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài