a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
a: A=[1;+∞)
B=(-∞;3]
b: A giao B=[1;3]
A hợp B=R
A\B=(3;+∞)
B\A=(-∞;1)
cho hai tập hợp:
A={x\(\in\)R|\(x^2\)+x-6=0 hoặc 3\(x^2\)-10x+8=0};
B={x\(\in\)R|\(x^2\)-2x-2=0 và 2\(x^2\)-7x+6=0}.
a) viết tập hợp A,B bằng cách liệt kê các phần tử của nó.
b) tìm tất cả các tập hợp sao cho \(B\subset X\) và \(X\subset A\).
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử
a) A= {x ∈ R | (2x – x2)( 3x – 2) = 0}
b, B = { x∈ Z | 2x3-3x2-5x = 0 }
c , C= { x ∈ Z | 2x2 -75x -77 = 0 }
d , D = { x ∈ R | (x2 - x - 2 ) (x2 - 9 ) = 0 } .
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
b) B = { \(n\in N\) | \(3< n^2< 30\) }
c) C = { \(x\in Z\) | \(2x^2-75x-77=0\) }
PHẦN TỰ LUẬN: Bài 1: Cho A={ x€R| (x^4 -16)(x² -1)=0} và B={x€N| 2x-9≤0}. Tìm tập hợp X sao cho: X⊂B\A Bài 2: Cho tập hợp A={-1;1;5;8}, B="gồm các ước số nguyên dương của 16"
Bài 4.Tập hợp nào dưới đây là tập rỗng:
a)A={\(\varnothing\)}
b)B={x\(\in\)R|x2+1=0}
c)C={x\(\in\)R|x< -3 và x>6}
Bài 5.Tìm tất cả tập con của các tập hợp sau:
a)A={3;5;7}
b)B={a;b;c;d}
c)C={\(\varnothing\)}
d)D={x\(\in\)R|(x-1)(x2-5x+6)=0}
Bài 6. Cho các tập hợp: A={a;b;c;d}, B={a;b}. Hãy tìm tất cả các tập X sao cho: B\(\subset\)X\(\subset\)A.
Tìm tất cả các tập con, các tập con gồm hai phần tử của các tập hợp sau:
a) A = { 1; 2 }
b) B = { 1; 2; 3 }
c) C = { a; b; c }
d) D = { \(x\in R\) | \(2x^2-5x+2=0\) }
Nêu định nghĩa đoạn [a; b], khoảng (a; b), nửa khoảng [a; b), (a; b], (-∞; b], [a; +∞). Viết tập hợp R các số dưới dạng một khoảng.
Xác định các tập hợp A U B, A\C, A giao B, B giao C biết:
A = {x thuộc R| -2 ≤ x ≤ 2}
B = {x thuộc R| x ≥ 3}
C = (-∞;0)
cho nửa khoảng A=(-\(\infty\);-m] và khoảng B=(2m-5;23). gọi S là tập hợp các số thực m để \(A\cup B=A\). hỏi S là tập con của tập hợp nào sau đây?
A. (-\(\infty\);-23)
B. (-\(\infty\);0]
C. (-23;+\(\infty\))
D. \(\varnothing\).