Cho tam giác ABC,kẻ đường trung tuyến AM,đường cao AH.Gọi D,E là hình chiếu của H trên AB,AC.Chứng minh DE vuông góc với AM.
Cho tam giác ABC vuông tại A,đường cao AH và trung tuyến AM .Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh: a)DE²=BH×CH. b)DE vuông góc AM. Mong mọi giúp ạ em đang cần gấp!
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
Cho tam giác ABC cân tại A , trung tuyến AM
a,Biết AB=10cm, BC=16cm.Tính AM
b,Gọi D và E là hình chiếu của của M trên AB và AC.Chứng minh AM là đường trung trực của DE
c,Kẻ đường thẳng đi qua B và vuông góc với AB.Đường thẳng vuông góc với AC.Chúng cắt nhau tại O. Chứng minh A,M,O thẳng hàng
a: Vì ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
BM=CM=BC/2=8(cm)
nên AM=6(cm)
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
\(\widehat{DAM}=\widehat{EAM}\)
DO đó: ΔADM=ΔAEM
Suy ra: AD=AE và MD=ME
hay AM là đường trung trực của DE
Tam giác ABC vuông tại A có AH; AM là đường cao và trung tuyến; gọi D và E lần lượt là hình chiếu của H trên AB và AC chứng minh rằng: AM vuông góc với DE
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
Mọi người giúp em với ak""""
a, Xét \(\Delta ABC\left(\perp A\right)\) và \(\Delta HBA\left(\perp H\right)\) có \(\widehat{B}\) chung
b,\(\Delta ABC\sim\Delta HBA\) theo a
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Leftrightarrow AB^2=HB.BC\)
\(=4.\left(4+9\right)\)
\(\Rightarrow AB=2\sqrt{13}\) (cm)
Áp dụng định lí py-ta-go trong \(\Delta ABH\):
\(AH=\sqrt{AB^2-BH^2}=6\left(cm\right)\)
Vì \(AH=DE=6cm\)
c, Xét \(\Delta HBA\left(\perp H\right)\) và \(\Delta DHA\left(\perp D\right)\) có \(\widehat{A}\) chung
\(\Rightarrow\Delta HBA\sim\Delta DHA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AH}=\dfrac{AH}{AB}\Rightarrow AD.AB=AH^2\) \(\left(1\right)\)
Tương tự \(\Delta EHA\sim\Delta HCA\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AH}=\dfrac{AH}{AC}\Rightarrow AE.AC=AH^2\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AD.AB=AE.AC\)
-Chúc bạn học tốt-
cho tam giác ABC vuông tại A đường cao AH ,trung tuyến AM . Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a)chứng minh ADHE là hình chữ nhật.
b.chứng minh AM vuông góc DE
c.biết AB=6cm,AC=8cm.tính DE? d.Gọi N là giao điểm của AM và HE.K là hình chiếu của điểm M trên AB.CMR: MK,BN,AH đồng quy
mọi người giúp tớ với hic:<
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB = 15cm, AC = 20cm.Vẽ đường cao AH và đường trung tuyến AM của tam giác ABC. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a/Tính BC và AM ?
b/Chứng minh : Tứ giác AEHD là hình chữ nhật
c/Kẻ MI vuông góc AC , gọi K đối xứng với M qua AC .Chứng minh : Tứ giác AKCM là hình thoi
d/ Chứng minh : AM vuông góc DE
Bài 2: Cho tam giác ABC vuông ở A , đường cao AH , trung tuyến AM . Gọi D E, theo thứ tự là hình chiếu của H trên AB AC , .
a) Tứ giác ADHE là hình gì?
b) Chứng minh DE AM . Trong trường hợp nào thì DE AM ?
c) Chứng minh DE AM .
d) Nếu tam giác ABC vuông cân tại A . Chứng minh tam giác MDE cân tại M .
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
=>ADHE là hình chữ nhật
b: Vì ADHE là hình chữ nhật
nên AH=DE(1)
Xét ΔAHM vuông tại H có AM là cạnh huyền
nên AH<=AM(2)
Từ (1) và (2) suy ra DE<=AM
Dấu '=' xảy ra khi H trùng với M
c: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB
Ta có: MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>DE\(\perp\)AM
cho tam giác ABC vuông tại A đường cao AH , trung tuyến AM
a, chứng minh góc HAB = góc MAC
b, gọi D , E lần lượt là hình chiếu của H trên AB, AC . chứng minh AM vuông góc DE
GIÚP MÌNH VỚI NHÉ
a) Xét t/g ABC có :
AM là trung tuyến
\(\Rightarrow\)\(AM=\frac{1}{2}BC\Leftrightarrow AM=MB=MC\)
\(\Rightarrow\)t/g AMC cân tại M ( MA = MC )
\(\Rightarrow\)\(\widehat{MAC}=\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{HAB}\)( cùng phụ với góc HBA )
\(\Rightarrow\)\(\widehat{HAB}=\widehat{MAC}\)( đpcm )
cho ΔABc vuông tại A, kẻ đường trung tuyến AM và đường cao A. Gọi D,E lần lượt là hình chiếu của H trên AB,AC.
a) Chứng minh rằng DE2=BH.HC
b) Chứng minh DE vuông góc AM