Bài 8: Cho ΔABC vuông tại A có AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh: AEHF là hình chữ nhật và AE.AB =AF.AC
b) Chứng minh: \(AB^2-AC^2=BH^2-CH^2\)
c) Chứng minh: \(\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Chứng minh: \(AH^3=BC.BE.CF\)
e) Chứng minh: \(BH.CH=AE.BE+AF.CF\)
f) Chứng minh: \(BC^2=3AH^2+BE^2+CF^2\)
Cho tam giác MNP vuông tại M (MN-MP), đường cao MH. Gọi D và E lần lượt là hình chiếu của H trên MN và MP. 2/ Chứng minh: MD.MN =ME, MP MN² b/ Chứng minh: MP4 PH và chứng minh MH = NPNDPE NH có Qua M kẻ đường vuông góc với DE cắt NP tại K. Chứng minh Kỉ là trung điểm Nh d/ Cho góc P=a; NP = a. Từ M kẻ đường vuông góc với MK cắt tia PN tại I. Chứng minh PI a.(cos 2a+1) 2cos 2a
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho △ ABC nhọn có đường cao AH. Gọi M, N lần lượt là hình chiếu H trên AB và AC.
a) tính độ dài đoạn thẳng AB, AH và số đô BAH biết AM = 12cm, BH = 9cm.
b) Chứng minh △ AMN ∼ △ ABC
c)Chứng minh AH=\(\dfrac{BC}{\cot B+\cot C}\)
\(Cho tam giác CDE vuông tại C, đường cao CH. Kẻ HA vuông góc với CD, HB vuông góc với CE. Biết CH=9cm, DH= 4 cm a) tính AB,HE, góc D b) chứng minh CA.CD=CB.CE c) Kẻ AM và BN vuông góc với AB. Chứng minh M,N lần lượt là trung điểm của DH và HE d) Tính diện tích tứ giác ABNM\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. a) Viết tỉ số lượng giác góc B của AABC. b) Cho AB=6cm, AC = 8cm . Tính BC,AH c ) Chứng minh: AE.AB = AF AC
Bài 1: Cho tam giác ABC có AB= 28cm, AC= 35cm, góc A= 60 độ. Tính BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng:
a) AM.AB=AN.AC
b) AM.AB+AN.AC= 2 MN2
c) AM.BM+AN.CN= AH2
d) BM/CN = AB3/AC3
Cho tam giác ABC cân tại A, đường cao AH. Gọi M,N lần lượt là hình chiếu của H trên AB, AC.
a) Biết BH=2cm, CH=8cm. TÍnh AH, AB.
b) nếu AB=AC. chứng minh MA.MB=NA.NC