Trong mặt phẳng tọa độ oxy cho hình thang ABCD vuông tại A và D có CD = 2AB và B ( 2;3 ), gọi E là trung điểm của cạnh CD, H là hình chiếu vuông góc của E lên AC, biết phương trình đường thẳng DH: x + 2y -3 = 0 và đường thẳng AC di qua k ( 1;3 )
Trong mặt phẳng Oxy, cho hình thang ABCD có đáy lớn CD=2AB, điểm C (-1;-1), trung điểm của AD là điểm M(1;-2). Tìm tọa độ điểm B, biết diện tích của tam giác BCD bằng 8, AB=4 và D có hoành độ nguyên dương.
Gọi \(\overrightarrow{n}=\left(a,b\right)\) là vectơ pháp tuyến của CD (\(a^2+b^2\ne0\)
Ta có phương trình CD : \(ax+by+a+b=0\)
\(S_{BCD}=S_{ACD}=8\Rightarrow d\left(A;CD\right)=\frac{2.S}{CD}=2\Rightarrow d\left(M.CD\right)=1\)
\(\Rightarrow\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=1\Leftrightarrow3a^2-4ab=0\)\(\rightarrow\begin{cases}a=0;b=1\\a=4;b=3\end{cases}\)\(\rightarrow\begin{cases}CD:y+1=0\\CD:4x+3y+7=0\end{cases}\)
Với \(CD:y+1=0\rightarrow D\left(d;-1\right);CD^2=4.AB^2=64\Leftrightarrow\begin{cases}d=7\\d=-9:L\end{cases}\)
\(D\left(7;-1\right);\overrightarrow{AB}=\frac{1}{2}\overrightarrow{DC}=\left(-4;0\right)\rightarrow B\left(-9;-3\right)\)
Với \(CD:4x+3y+7=0\rightarrow D\left(d;\frac{-4d-7}{3}\right)\rightarrow CD^2=\frac{25\left(d+1\right)^2}{9}=64\) (loại)
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD ( vuông tại A và B ) . Gọi M(-3,-3) N lần lược là trung điểm của AD và AB . Xác định tọa độ các đỉnh của hình thang vuông ABCD , biết phương trình các đường thẳng BD: 7x+3y+2=0, CN: x-3y=0, CN: x-y=0và đường thẳng AB đi qua điểm e (-3;1)
Đường CN có pt là x-3y=0 hay x-y=0 vậy bạn?
Trong mp Oxy cho hình thang ABCD vuông tại A và D(2;2), CD=2AB. H là hình chiếu D trên AC, M là tđ HC. Bt pt DH:2x+y-5=0 BM: 4x+7y-61=0. Tìm tọa độ đỉnh
Đề sai rồi bạn ơi.
Nếu \(D=\left(2;2\right)\) thì không thuộc đường thẳng DH rồi.
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có A(1; -1) và B(3; 0). Tìm tọa độ điểm D, biết D có tung độ âm.
A.D(0; -1)
B. D( 2; -3)
C. D( 2; -3); D(0; 1)
D. D( -2; -3)
Gọi C= (x, y). Ta có A B → = 2 ; 1 B C → = x − 3 ; y .
Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C
⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2 hoặc x = 2 y = 2 .
Với C 1 4 ; − 2 ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.
Với C 2 2 ; 2 ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.
Chọn B.
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD ( AB//CD) . biết tọa độ các điểm A(-8;2) B(-4;6)D(-6-8) xác định tọa độ đỉnh C
\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)
\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:
\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)
Phương trình đường thẳng d qua M và vuông góc AB có dạng:
\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)
Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)
Trong mặt phẳng hệ tọa độ Oxy, cho hình vuông ABCD và điểm E thuộc cạnh BC. Một đường thẳng qua A vuông góc với AE cắt CD tại F. Đường thẳng chứa đường trung tuyến AM của tam giác AEF cắt CD tại K. Tìm tọa độ điểm D biết A(-6;6). M(-4;2) và K(-3;0)
Có 2 tam giác vuông \(\Delta ABE=\Delta ADF\) vì \(AB=AD\) và \(\widehat{BAE}=\widehat{DAF}\) cùng phụ với \(\widehat{DAE}\)
Suy ra tam giác AEF vuông cân và \(ME=MA=MF\Rightarrow AM\perp EF\)
Ta có \(\overrightarrow{MA}=\left(2;-4\right)\), đường thẳng EF đi qua M có phương trình :
\(2\left(x+4\right)-4\left(y-2\right)=0\Leftrightarrow x-2y+8=0\)
Bây giờ tìm tọa độ các điểm E, F thỏa mãn ME=MA=MF. Gọi T(x;y) thuộc đường thẳng EF, thì x=2t-8; y=t, \(t\in R\)
Khi đó \(MT=MA\Leftrightarrow\left(2t-8+4\right)^2+\left(1-2\right)^2=2^2+\left(-4\right)^2=20\)
\(\Leftrightarrow5\left(t-2\right)^2=20\Leftrightarrow t\left(t-4\right)=0\Leftrightarrow\)\(\begin{cases}t=0\\t=4\end{cases}\)
Như vậy có 2 điểm \(t_1\left(-8;0\right);t_2\left(0;4\right)\) ( Chính là 2 điểm E và F) thuộc đường thẳng EF mà \(MT_1=MA\)
- Trường hợp \(E\left(-8;0\right);F\left(0;4\right)\). Do F thuộc đường thẳng CD nên đường thẳng CD nhận \(\overrightarrow{KF}=\left(3;4\right)\) làm vec tơ chỉ phương.
Phương trình đường thẳng CD là \(\begin{cases}x=3t\\y=4+4t\end{cases}\) (\(t\in R\)).
Khi đó \(D\left(3t;4+4t\right)\)
Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{KF}.\overrightarrow{AD}=0\Rightarrow3\left(3t+6\right)+4\left(-2+4t\right)=0\Leftrightarrow t=-\frac{2}{5}\Rightarrow D\left(-\frac{6}{5};\frac{12}{5}\right)\)
- Trường hợp \(F\left(-8;0\right);E\left(0;4\right)\), đường thẳng CD nhận \(\overrightarrow{FK}=\left(5;0\right)\) làm vec tơ chỉ phương
Phương trình CD : \(\begin{cases}x=-8+5t\\y=0\end{cases}\) \(\left(t\in R\right)\)
Khi đó \(D\left(-8+5t;0\right)\)
Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{FK}.\overrightarrow{AD}=0\Leftrightarrow5\left(-2+5t\right)=0\Leftrightarrow t=\frac{2}{5}\Rightarrow D\left(-6;0\right)\)
Trong mặt phẳng Oxy, cho hình thang abcd có ad // bc và ad=3bc. gọi m và n lần lượt là trung điểm của ab và cd. đường thẳng qua m, vuông góc với ac và đường thẳng qua n vuông góc với bd cắt nhau tại p. tìm tọa độ các đỉnh hình thang biết m(1;-1), n(5;3), p(-1;3)
trong mặt phẳng tọa độ Oxy cho hình thang ABCD vuông tại các đỉnh A,b và có AB=AD=1/2BC. Điểm N(1/3,1) thuộc đoạn thẳng AC sao cho NC=2NA. Đường trung tuyến kẻ từ B của tam gics BCD có phương trình x-y-2=0. Timf tọa đọ các đỉnh của hình thang bieets B có hoành độ âm
trong mặt phẳng với hệ tọa độ oxy , cho hình thang vuông ABCD , có B=C=90độ . Phương trình các đường thẳng AC và BD lần lượt là x+2y=0 và x-y-3=0. Xác định tọa độ các đỉnh của hình thang ABCD biết trung điểm AD là m( -3/2; -3/2)