\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right).\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right).\dfrac{2}{\sqrt{x}-1}\)
= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)=\(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\)
\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right).\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) RÚT GỌN
\(\left(\dfrac{2}{2-\sqrt{x}}+\dfrac{3+\sqrt{x}}{x-2\sqrt{x}}\right):\left(\dfrac{2+\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-\sqrt{x}}{2+\sqrt{x}}-\dfrac{4x}{x-4}\right)\) (ĐK: \(x\ne4;x>0\))
\(=\left[\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left[\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{-2\sqrt{x}+\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}:\left[\dfrac{-\left(\sqrt{x}+2\right)^2+\left(\sqrt{x}-2\right)^2-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-x-4\sqrt{x}-4+x+4\sqrt{x}+4-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{-4x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{-4x}\)
\(=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{-4x}\)
\(=-\dfrac{3\sqrt{x}+6-x-2\sqrt{x}}{4x}\)
\(=-\dfrac{\sqrt{x}-x+6}{4x}\)
\(\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\) (ĐK: \(x\ge0;x\ne1;x\ne\dfrac{1}{9}\))
\(=\left[\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right]\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
Rút gọn:
1) \(P=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
2) \(P=\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Giúp mk nhé :3
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
d)
Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)
\(=\dfrac{x+4}{2x-8}\)
\(D=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
1, Rút gọn D
2, Tìm x để \(D=\left(4-\dfrac{x-\sqrt{x}+13}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}\)
1: \(D=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
2: \(\Leftrightarrow D=\dfrac{4\sqrt{x}+12-x+\sqrt{x}-13}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(\Leftrightarrow D=\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{-x+5\sqrt{x}-1}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}=1\)
\(\Leftrightarrow\left(-x+5\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)=\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow-2x\sqrt{x}-x+10x+5\sqrt{x}-2\sqrt{x}-1=x\sqrt{x}+3x+x+3\sqrt{x}+\sqrt{x}+3\)
\(\Leftrightarrow-2x\sqrt{x}+9x-3\sqrt{x}-1=x\sqrt{x}+4x+4\sqrt{x}+3\)
\(\Leftrightarrow-3x\sqrt{x}+5x-7\sqrt{x}-4=0\)
Bạn xem lại đề nhé, nghiệm rất xấu
1.A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}}{2}\)
2.B=\(\left(\dfrac{2\sqrt{x+x+1}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
3.C=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\dfrac{8\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\)
Làm chi tiết hộ mình với ak mình đang cần gấp!!!
1: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
Rút gọn các biểu thức sau:
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}+\dfrac{6-7\sqrt{x}}{x-4}\right)\left(\sqrt{x}+2\right)\)
\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{1}}\right):\dfrac{\sqrt{a}+1}{a-1}\)
\(D=\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(E=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)
giúp mình với ạ!mình đang cần gấp
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
3. ĐKXĐ: $a\geq 0; a\neq 1$
\(C=\frac{\sqrt{a}(\sqrt{a}+1)-\sqrt{a}}{(\sqrt{a}+1)(\sqrt{a}-1)}:\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}\)
\(\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}:\frac{1}{\sqrt{a}-1}=\frac{a}{(\sqrt{a}-1)(\sqrt{a}+1)}.(\sqrt{a}-1)=\frac{a}{\sqrt{a}+1}\)
Rút gọn:
\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
Giải::
ĐK: x khác +- 1
\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)
rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.
Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.
NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!
4.
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)-\left(\dfrac{1}{x+\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
a. Rút gọn A.
b. Tính x khi \(A=\dfrac{1}{2}\)
5. CMR
\(\left(\dfrac{\sqrt{30}}{\sqrt{3}}-\dfrac{\sqrt{20}}{\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right).\sqrt{4+\sqrt{15}}=2\)
nhanh lên nha