Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C(0; 0; 4), C’(0; 0; 3).
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;2;-3); B(2; -1; 0). Tọa độ của vectơ A B → là
A. A B → = 1 ; - 1 ; 1
B. A B → = 1 ; 1 ; - 3
C. A B → = 3 ; - 3 ; 3
D. A B → = 3 ; - 3 ; - 3
Trong không gian Oxyz, cho các điểm A(-1;2;-3), B(2;-1;0). Tìm tọa độ véc-tơ
Trong không gian Oxyz, cho các điểm A ( 2 ; - 2 ; 1 ) , B ( 1 ; - 1 ; 3 ) . Tọa độ của vectơ A B → là
A. (1;-1;-2)
B. (-1;1;2)
C. (3;-3;4)
D. (-3;3;-4)
Trong không gian Oxyz, cho các điểm A(2;-2;1), B(1;-1;3). Tọa độ của véctơ A B → là
A. (1 ;-1 ;-2)
B. (-1 ;1 ;2)
C. (3 ;-3 ;4)
D. (-3 ;3 ;-4)
Trong không gian Oxyz, cho các điểm A(2;-2;1), B(1;-1;3). Tọa độ của vecto A B → là:
Đáp án A.
Phương pháp:
+) Cho hai điểm
Khi đó ta có:
Cách giải:
Ta có:
Trong không gian với hệ tọa độ Oxyz cho điểm Phương trình mặt phẳng ( Q ) đi qua các hình chiếu của điểm A lên các trục tọa độ là
A . ( Q ) : x - y + 2 z - 2 = 0
B . ( Q ) : 2 x - 2 y + z - 2 = 0
C . ( Q ) : x - 1 + y 1 + z - 2 = 1
D . ( Q ) : x - y + 2 z + 6 = 0
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Trong không gian với hệ tọa độ Oxyz, cho các điểm A - 1 ; 0 ; 1 , B 1 ; 1 ; - 1 , C 5 ; 0 ; - 2 . Tìm tọa độ điểm H sao cho tứ giác ABCH là thành hình thang cân với hai đáy AB, CH.
A. H(3;-1;0)
B. H(7;1;-4)
C. H(-1;-3;4)
D. H(1;-2;2)
Chọn C.
Phương pháp: Sử dụng các véc tơ bằng nhau.
Giả sử M,N lần lượt là hình chiếu của A, B lên CH.
Trong không gian Oxyz, cho hai điểm A, B có tọa độ các điểm A( x A ; y A ; z A ), B( x B ; y B ; z B ). Tọa độ trung điểm M của đoạn thẳng AB là:
A. x A + x B ; y A + y B ; z A + z B
B. x B - x A ; y B - y A ; z B - z A
C. x A + x B 2 ; y A + y B 2 ; z A + z B 2
D. x B - x A 2 ; y B - y A 2 ; z B - z A 2
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;1;-2) Tọa độ điểm đối xứng với A qua mặt phẳng (Oxz) là:
A. A'(4;-1;2)
B. A'(-4;-1;2)
C. A'(4;-1;-2)
D. A'(4;1;2)
Trong không gian Oxyz, cho điểm A(2; –1;1). Phương trình mặt phẳng (α) đi qua hình chiếu của điểm A trên các trục tọa độ là
A. x 2 = y - 1 = z 1 = 0
B. x 2 + y - 1 + z 1 = 1
C. x 2 + y 1 + z 1 = 1
D. x 2 + y - 1 + z 1 = - 1
Đáp án B
Phương pháp:
Hình chiếu của điểm M(x0;y0;z0) trên trục Ox là điểm M1(x0;0;0)
Hình chiếu của điểm M(x0;y0;z0) trên trục Oy là điểm M2(0;y0;0)
Hình chiếu của điểm M(x0;y0;z0) trên trục Oz là điểm M3(0;0;z0)
Phương trình theo đoạn chắn của mặt phẳng đi qua 3 điểm
A(a;0;0), B(0;b;0), C(0;0;c), (a,b,c ≠ 0) là: x a + y b + z c = 1
Cách giải: Hình chiếu của điểm A(2; –1;1) trên các trục tọa độ Ox, Oy, Oz lần lượt là: (2;0;0), (0; –1;0), (0;0;1)
Phương trình mặt phẳng (α): x 2 + y - 1 + z 1 = 1