Hỏi có bao nhiêu cách sắp xếp các chữ số 2 ; 3 ; 4 ; 5 ; 6 để lập thành một số có 6 chữ số mà chia hết cho 11
Mik sẽ cho 3 tick
cho các chữ cái a;a;a;h;h.
a) có bao nhiêu cách sắp xếp các chữ cái?
b) có bao nhiêu cách sắp xếp các chữ cái sao cho xuất hiện hai chữ cái h, a liền nhau với h đứng trược?
Có bao nhiêu cách khác nhau để sắp xếp các chữ cái của từ "THAILAND" sao cho 2 chữ A luôn đứng cạnh nhau?
Để 2 chữ A luôn đứng cạnh nhau thì ta sẽ coi hai chữ đó là cùng 1 chữ, sau đó ta sẽ tính cách xếp các chữ T,H,AA,I,L,N,D vào 7 vị trí trong từ
=>Số cách xếp là \(7!=5040\left(cách\right)\)
tâm có 28 viên bi.tâm muốn sắp xếp số bi đó vào các túi cho đều nhau. Hỏi Tâm có bao nhiêu cách ?
Có bao nhiêu cách sắp xếp 6 chữ cái T, C, D, T, C, E thành một hàng sao cho mỗi cách sắp xếp 2 chữ cái giống nhau không đứng cạnh nhau.
A. 60
B. 84
C. 480
D. 100
Có bao nhiêu cách sắp xếp 6 chữ cái T, C, D, T, C, E thành một hàng sao cho mỗi cách sắp xếp 2 chữ cái giống nhau không đứng cạnh nhau.
A. 60
B. 84
C. 480
D. 100
Đáp án B
Gọi A là tập hợp tất cả cách sắp xếp, là tập hợp các cách xếp mà chữ cái T đứng cạnh nhau, là tập hợp các cách xếp mà chữ cái D đứng cạnh nhau.
Ta có số phần tử của tập hợp A là (do 2 chữ T như nhau, 2 chữ C như nhau
nên khi hoán vị vẫn tính là 1).
Số phân tử của tập hợp lần lượt là (ta coi 2 chữ T đứng cạnh nhau là 1 chữ, 2 chữ C đứng cạnh nhau là 1 chữ).
Số cách sắp xếp mà vừa có T đứng cạnh nhau, c đứng cạnh nhau là
Vậy số cách sắp xếp cần tính là
.
Có 7 học sinh nữ và 3 học sinh nam. Ta muốn sắp xếp vào một bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách sắp xếp để:
a) Sắp xếp tùy ý.
b) Các bạn nam ngồi cạnh nhau và các bạn nữ ngồi cạnh nhau.
c) 3 học sinh nam ngồi kề nhau.
d) Không có 2 bạn nam nào ngồi cạnh nhau.
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
Có 3 học sinh nữ và 2 học sinh nam. Hỏi có bao nhiêu cách sắp xếp các học sinh vào một bàn dài có 5 ghế ngồi.
A. 34
B. 46
C. 120
D. 26
Có 8 bạn nam và 2 bạn nữ. Hỏi có bao nhiêu cách sắp xếp các bạn trên thành một hàng ngang sao cho hai bạn nữ đứng cách nhau đúng hai bạn nam?
A. 725760
B. 564480
C. 757260
D. 546640
Xếp 2 bạn nữ đứng trước, số cách là 2!.
Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn; xếp 2 bạn nam đó là .
Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.
Số cách xếp 7 bạn này là 7!.
Áp dụng quy tắc nhân; số cách xếp tất cả là:
Chọn B.
Hỏi có bao nhiêu cách sắp xếp 3 bạn nam và 2 bạn nữ ngồi thành 1 hàng sao cho các bạn nam
không được ngồi cạnh nhau?