cho tam giác ABC vuông tại A , M là một điểm thuộc đoạn thẳng BC sao cho M là trung điểm của BC . Với E là trung điểm của AB, F là trung điểm của AC. Kẻ ME;MF. Chứng tỏ rằng MF song song với AB
Cho tam giác ABC vuông cân tại A. M là một điểm thuộc cạnh BC, kẻ ME ⊥ AB tại E, MF ⊥ AC tại F. O là trung điểm của BC. OFE là tam giác gì? vì sao?
- Xét tam giác ABC vuông cân tại A có:
AO là trung tuyến ứng với cạnh huyền BC (O là trung điểm BC)
=>AO=BO=CO=\(\dfrac{1}{2}\)BC ; AO⊥BC tại O.
- Ta có: \(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^0\) nên AEMF là hình chữ nhật.
=> AE=MF ; AB//MF
- Ta có: \(\widehat{ABC}=\widehat{FMC}=45^0\) (AB//MF, tam giác ABC vuông cân tại A).
Mà tam giác MFC vuông tại F (MF⊥AC tại F) nên tam giác MFC vuông cân tại F.
=>MF=CF=AE.
- Ta có: Tam giác AOB vuông tại O (AO⊥BC tại O) mà AO=BO (cmt) nên tam giác AOB vuông cân tại O.
- Xét tam giác OAE và tam giác OCF có:
OA=OC (cmt)
\(\widehat{OCF}=\widehat{OAE}=45^0\) (tam giác ABC vuông cân tại A, tam giác AOB vuông cân tại O).
AE=CF (cmt)
=>Tam giác OAE= Tam giác OCF (c-g-c)
=> OE=OF (2 cạnh tương ứng).
\(\widehat{AOE}=\widehat{COF}\) (2 góc tương ứng) mà \(\widehat{COF}+\widehat{AOF}=90^0\) (AO⊥BC tại O).
nên \(\widehat{AOE}+\widehat{AOF}=90^0\) =>\(\widehat{EOF}=90^0\) =>Tam giác OEF vuông tại O mà OE=OF (cmt) nên tam giác OEF vuông cân tại O.
Cho tam giác ABC cân tại A, điểm M là trung điểm của BC. Kẻ MH vuông góc với AB. Gọi E là một điểm thuộc đoạn thẳng AH. Trên cạnh AC lấy điểm F sao cho góc AEF = 2 EMH. chứng minh FM là tia phân giác của góc EFC.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Từ
M kẻ ME, MF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh tứ giác AEMF là hình chữ nhật.
b) Lấy điểm K đối xứng với điểm M qua F. Chứng minh F là trung điểm của AC và
tứ giác AMCK là hình thoi.
c) Gọi O là giao điểm của AM và EF. Chứng minh tứ giác ABMK là hình bình hành
và ba điểm B, O, K thẳng hàng.
d) Tìm điều kiện của tam giác ABC để tứ giác ABCK là hình thang cân.
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
Cho tam giác vuông ABC vuông tại A, biết AB= 6cm, AC=8 cm. M là trung điểm của BC kẻ ME vuông góc AC( E thuộc AC), MD vuông góc AB( D thuộc AB)
a) tính BC và diện tích của tam giác ABC?
b) tứ giác ADME là hình gì? vì sao?
c) gọi K là trung điểm của MD. chứng minh 3 điểm B, K, E thẳng hàng
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
Cho tam giác ABC vuông tại A M là trung điểm của BC Qua M kẻ các đường thẳng song song với AB và AC cắt AC AB tại E và F /chứng minh E là trung điểm của AC Chứng minh E O F thẳng hàng
a: Xét ΔCAB có
M là trung điểm của CB
ME//BA
Do đó: E là trung điểm của AC
b: Xét tứ giác AFME có
AF//ME
AE//MF
Do đó: AFME là hình bình hành
=>AM cắt FE tại trung điểm của mỗi đường
=>E,O,F thẳng hàng
Cho tam giác ABC vuông tại B, A= 60o . Gọi M là trung điểm của AC Qua M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với BC (F thuộc BC)
a) Chứng minh tứ giác BEMF là hình chữ nhật?
b) Gọi N là điểm đối xứng với M qua điểm F. Chứng minh BNCM là hình thoi?
c) Tứ giác ABNC là hình gì ? Vì sao?
d) Gọi D là điểm đối xứng với N qua AC. Tính góc ADC.
Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm; gọi M là trung điểm của BC. Từ M kẻ ME vuông góc với AB, MF vuông góc với AC(E thuộc AB, F thuộc AC)
a) Tứ giác AEMF là hình gì?
b) tính độ dài đoạn thẳng EF
c) tính diện tích của tứ giác AEMF
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)
\(\widehat{AEM}=90^0\)(ME⊥AB)
\(\widehat{AFM}=90^0\)(MF⊥AC)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
\(\Leftrightarrow BC=\sqrt{169}=13cm\)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(AM=\dfrac{13}{2}=6.5cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)
mà AM=6,5cm
nên EF=6,5cm
Vậy: EF=6,5cm
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AC(ME//AF, C∈AF)
Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
⇒\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)
Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(MF//AE, B∈AE)
Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
⇒\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)
Ta có: AEMF là hình chữ nhật(cmt)
nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)