Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa Huỳnh
Xem chi tiết
Dr.STONE
28 tháng 1 2022 lúc 12:16

- Xét tam giác ABC vuông cân tại A có:

AO là trung tuyến ứng với cạnh huyền BC (O là trung điểm BC)

=>AO=BO=CO=\(\dfrac{1}{2}\)BC ; AO⊥BC tại O.

- Ta có: \(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^0\) nên AEMF là hình chữ nhật.

=> AE=MF ; AB//MF

- Ta có: \(\widehat{ABC}=\widehat{FMC}=45^0\) (AB//MF, tam giác ABC vuông cân tại A).

Mà tam giác MFC vuông tại F (MF⊥AC tại F) nên tam giác MFC vuông cân tại F.

=>MF=CF=AE.

- Ta có: Tam giác AOB vuông tại O (AO⊥BC tại O) mà AO=BO (cmt) nên tam giác AOB vuông cân tại O.

- Xét tam giác OAE và tam giác OCF có:

OA=OC (cmt)

\(\widehat{OCF}=\widehat{OAE}=45^0\) (tam giác ABC vuông cân tại A, tam giác AOB vuông cân tại O).

AE=CF (cmt)

=>Tam giác OAE= Tam giác OCF (c-g-c)

=> OE=OF (2 cạnh tương ứng).

\(\widehat{AOE}=\widehat{COF}\) (2 góc tương ứng) mà \(\widehat{COF}+\widehat{AOF}=90^0\) (AO⊥BC tại O).

nên \(\widehat{AOE}+\widehat{AOF}=90^0\) =>\(\widehat{EOF}=90^0\) =>Tam giác OEF vuông tại O mà OE=OF (cmt) nên tam giác OEF vuông cân tại O.

DanAlex
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2021 lúc 8:46

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

tekrjwek
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:09

a: Xét ΔCAB có

M là trung điểm của CB

ME//BA

Do đó: E là trung điểm của AC

b: Xét tứ giác AFME có

AF//ME

AE//MF

Do đó: AFME là hình bình hành

=>AM cắt FE tại trung điểm của mỗi đường

=>E,O,F thẳng hàng

Hồng  Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 10:35

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>ME//BD và ME=BD

=>MEDB là hình bình hành

=>MD cắtEB tại trung điểm của mỗi đường

=>B,K,E thẳng hàng

tekrjwek
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:09

a: Xét ΔCAB có

M là trung điểm của CB

ME//BA

Do đó: E là trung điểm của AC

tekrjwek
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:19

 

a: Xét ΔCAB có

M là trung điểm của CB

ME//BA

Do đó: E là trung điểm của AC

b: Xét tứ giác AFME có

AF//ME

AE//MF

Do đó: AFME là hình bình hành

=>AM cắt FE tại trung điểm của mỗi đường

=>E,O,F thẳng hàng

 

Phương Linh Phạm
Xem chi tiết
phuong thao Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2020 lúc 22:30

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)