Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phuong thao Nguyen

 Cho tam giác ABC vuông tại A có AB=5cm, AC=12cm; gọi M là trung điểm của BC. Từ M kẻ ME vuông góc với AB, MF vuông góc với AC(E thuộc AB,  F thuộc AC)

a) Tứ giác AEMF là hình gì?

b) tính độ dài đoạn thẳng EF

c) tính diện tích của tứ giác AEMF

Nguyễn Lê Phước Thịnh
20 tháng 12 2020 lúc 22:30

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)


Các câu hỏi tương tự
Hapa
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Bui Le Phuong Uyen
Xem chi tiết
Tống Hoàng Minh
Xem chi tiết
Ly Hàn Khánh
Xem chi tiết
trường trần
Xem chi tiết
NAM NGUYỄN
Xem chi tiết
Văn Tấn Công Thành
Xem chi tiết
Hoàng thị Hiền
Xem chi tiết