Tìm nghiệm của đa thức h ( x ) biết h ( x ) = 8x^3 + 1x^2 +x - 2
Cho đa thức :f(x)=x^4-2x^2+4x+8x^3 và G(x) =6+8x^3-3x^2+4x
a, Tính F(-1)
b,Tính H(x) = F(x) - G(x)
c, Đa thức H(x) có nhiều nhất bao nhiêu nghiệm . Tìm nghiệm của đa thức H(x)
a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3
=1-2+(-4)+(-8)
=-9
b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)
=x4-2x2+4x+8x3-6-8x3+3x2+4x
=x4+x2+8x-6
t là nốt câu c):
Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.
Làm lại câu b) của bạn kia tí nhé:
b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)
c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.
\(H\left(x\right)=x^4+3x^2-2x^2-6\)
\(=\left(x^2-2\right)\left(x^2+3\right)=0\)
Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Tìm nghiệm của đa thức H (x). Biết H(x)= 8x - 12
8x-12=0
8x =12
x =1,5
Vậy nghiệm của đa thức H(x)=1,5
\( H(x)= 8x - 12\)
Xét H(x) = 0
=> \(8x-12=0\)
=> \(8x=12\)
=> \(x = \dfrac{3}{2}\)
Vậy \(x = \dfrac{3}{2}\) là nghiệm của H(x)
tìm 1 nghiệm của đa thức : h(x) = -17^3 + 8x^2 - 3x + 12
TÌM NGHIỆM CỦA ĐA THỨC SAU:
h(x)=3x2+1x
Ta có :\(3x^2+1x\)
\(\Rightarrow x\left(3x+1\right)=0\)(Áp dụng tính chất phân phối của phép tính)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{3}\end{cases}}\)
Vậy nghiệm của đa thức trên là \(0\)và \(\frac{-1}{3}\).
Chúc bạn học tốt !!!
Ta có : \(H\left(x\right)=0\Leftrightarrow3x^2+x=0\)
\(\Leftrightarrow\left(3x+1\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=0\end{cases}}\)
Vậy nghiệm của đa thức H(x) là x = \(\frac{-1}{3}\); x = 0
Xét : \(h\left(x\right)=0\)
\(\Rightarrow3x^2+1x=0\)
\(\Rightarrow x.\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)là nghiệm của đa thức \(h\left(x\right)\)
Chúc bạn học tốt !!!
Tìm nghiệm của đa thức:
D(x) = (x- 1)^2 + (x+5)^2.
N(x) = x^2 - 6x + 8.
H(x) = 8x^2 - 6x - 2.
F(x) = 2x^3 + x^2 - 8x - 4.
a) Cho D(x) =0
=> (x -1)^2 +( x+5)^2 =0
=> (x-1) ^2 = -( x+5)^2
=> x-1 = -x-5
=> x+x = -5+1
2x = -4
=> x = -2
KL : x=-2 là nghiệm của D(x)
b) Cho N(x) =0
=> x^2 -6x +8 =0
=> x.(x-6) =-8
=> x = 2
KL: x=2 là nghiệm của N(x)
c) Cho H(x) =0
=> 8x^2 -6x -2 =0
2.( 4x^2 -3x -1) =0
=> 4x^2 -3x -1 =0
x.(4x-3) =1
=> x=1
KL: x=1 là nghiệm của H(x)
d) Cho F(x) =0
=> 2x^3 +x^2 -8x -4 =0
x( 2x^2 +x -8) = 4
=> x= 2
KL: x=2 là nghiệm của F(x)
Chúc bn học tốt !!!
a) x = 1 hoặc x = -5
b) x = 2 hoặc x = 4
c) x = 1 hoặc x = -1/4
d) x = -2 hoặc x = -1/2 hoặc x = 2
tìm nghiệm của đa thức H(x)=2x^3 - 8x
Cho H(x)= 0
2x3-8x = 0
x.(2x2-8) = 0
TH1)
x =0
TH2)
2x2-8 = 0
2x2 = 8
x2 =4
x=2
Vậy nghiệm của đa thức \(H\left(x\right)=\left\{0,2\right\}\)
cho H(x)=0
\(=>2x^3-8x=0\)
\(2x^3-2x4=0\)
\(=>2x\left(x^2-4\right)=0\)
\(=>\left[{}\begin{matrix}2x=0\\x^2=4\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)
Cho các đa thức: f(x) = x ^ 2 - (m - 1) * x + 3m - 2 g(x) = x ^ 2 - 2(m + 1)x - 5m + 1 h(x) = - 2x ^ 2 + mx - 7m + 3 Tìm m, biết: 1. Đa thức f có nghiệm là –1 2. Đa thức g có nghiệm là 2 3. Đa thức h có nghiệm là –1 4. f(1) = g(2) 5. g(1) = h(- 2)
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
Cho đa thức f(x)= \(\left(3x-1\right)^2-\left(x^2-4\right)-\left(8x^2+2x-3\right)\)
và g(x)= \(ax^2+bx-4\)
a, Thu gọn đa thức f(x)
b, Tìm a và b của đa thức g(x) biết rằng g(x)=0 tại x=1 và x=4
c, Chứng minh g(x)=(1-x)(x-4)
d, Viết đa thức h(x) = f(x) + g(x) thành 1 tích
e, Tìm nghiệm của h(x) (tìm đủ các nghiệm)
Tìm nghiệm của đa thức :
H(x) = 5x3 +2+8x2-8x3-5x2-6-3x2
ta có: H(x) = 5x^3 + 2 + 8x^2 - 8x^3 - 5x^2 - 6 - 3x^2
H(x) = - ( 8x^3 - 5x^3) + ( 8x^2 - 5x^2 - 3x^2 ) - ( 6-2)
H(x) = - 3 x^3 - 4
Cho H(x) = 0
=> - 3 x^3 - 4 = 0
-3x^3 = 4
x ^3 = -4/3
H(x) = 5x3 +2+8x2-8x3-5x2-6-3x2
H(x) = ( 5x3 - 8x3 ) + ( 8x2 - 5x2 - 3x2 ) + ( 2 - 6 )
H(x) = -3x3 - 4
Để H(x) có nghiệm thì -3x3 - 4 = 0
\(\Rightarrow\)x3 = \(\frac{4}{-3}\)\(\Rightarrow\)x = \(\sqrt[3]{\frac{4}{-3}}\)