Cho A = \(\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\) và B = \(\dfrac{2}{x+1}\)
a) Chứng tỏ A = \(\dfrac{1}{x}\)
b) Rút gọn P = A : B
c) Tìm x để P = 3
d) Tìm giá trị nhỏ nhất của biểu thức C = \(2x^2\). P
e) Tìm x để P > \(\dfrac{1}{2}\)
Giúp mình vs :)
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
cho biểu thức: A=\(\dfrac{x^2+x-2}{x},B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}\)
a)tính giá trị biểu thức với A=3
b)rút gọn biểu thức B
c)tìm giá trị của x để biểu thức P=A.B đạt giá trị nhỏ nhất
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
Cho biểu thức: A =\(\dfrac{x^2+2}{x^2-x-2}-\dfrac{2x}{x+1}+\dfrac{x-1}{x-2}\) và B \(\dfrac{1}{x-2}\) (x ≠ -1;x ≠ 2)
a) Tính giá trị của A khi x = 5
b)Rút gọn P = A : B
c)Tìm x để \(^{P^2}\) =P + 2
a: \(A=\dfrac{x^2+2-2x\left(x-2\right)+\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2-2x^2+4x+x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\)
Khi x=5 thì \(A=\dfrac{4\cdot5+1}{\left(5-2\right)\left(5+1\right)}=\dfrac{21}{3\cdot6}=\dfrac{7}{6}\)
b: P=A:B
\(=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\cdot\dfrac{x-2}{1}=\dfrac{4x+1}{x+1}\)
c: P^2=P+2
=>P^2-P-2=0
=>(P-2)(P+1)=0
=>P=2 hoặc P=-1
=>4x+1=2x+2 hoặc 4x+1=-x-1
=>2x=1 hoặc 5x=-2
=>x=-2/5(nhận) hoặc x=1/2(nhận)
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)
A= \(A=-\dfrac{x}{4-x}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) với x lớn hơn hoặc bằng 0; x khác 4
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
a. Rút gọn A
b. Tính giá trị của A khi x=36
c. Tìm x để a=-1/3
d. tìm x nguyên để biểu thức A có giá trị nguyên
e. Tìm x để A:B =-2
F. Tìm x để A đạt giá trị nhỏ nhất, tính giá trị nhỏ nhất
mn giúp mình với ạ mình đang cần gấp mình cảm ơn
Bài 1: Cho biểu thức: P =\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}-\dfrac{x^2-1}{x^2+2x+1}\)
a) Tìm điều kiện của x để biểu thức P xác định.
b) Rút gọn biểu thức P.
c) Với giá trị nào của x thì P = 2.
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên.
Mình phải đi ăn nên chiều mình làm nốt câu d nhé
a) Điều kiện để P được xác định là: \(x\ne1;x\ne-1\)
b) \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}x-\dfrac{x^2-1}{x^2+2x+1}\)
\(P=\left(\dfrac{\left(x+1\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right):\dfrac{2x}{5x-5}x-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)^2}\)
\(P=0:\dfrac{2x}{5x-5}x-\dfrac{x-1}{x+1}\)
\(P=-\dfrac{x-1}{x+1}\)
c) Theo đề ta có:
\(P=2\)
\(\Leftrightarrow-\dfrac{x-1}{x+1}=2\)
\(\Leftrightarrow-\left(x-1\right)=2x+2\)
\(\Leftrightarrow-x-2x=2-1\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(P=-\dfrac{x-1}{x+1}\) nguyên khi:
\(\Leftrightarrow x-1⋮-\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)-2⋮-\left(x+1\right)\)
\(\Leftrightarrow-2⋮-\left(x+1\right)\)
\(\Leftrightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)\)
Vậy \(P\) nguyên khi \(x\in\left\{-2;0;-3;1\right\}\)
Cho biểu thức C =( \(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)):(1-\(\dfrac{x^2-2}{x^2+x+1}\))
a) Rút gọn C
b) Tính giá trị của C biết |1-x| +2 =3(x+1)
c) Tìm x nguyên để C nguyên
d) Tìm x biết |C| > C
e) Tìm x để C2-C + 1 đạt giá trị nhỏ nhất
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
Cho biểu thức: A = \(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\)và B = \(\dfrac{x^2-x}{2x+1}\) (x ≠ -\(\dfrac{1}{2}\),x ≠ 1)
a) Tính giá trị của B tại x = 3
b) Rút gọn M = A.B
c) Tìm x để M = \(\dfrac{1}{3}\)
`a,` Với `x=3`
\(B=\dfrac{x^2-x}{2x+1}\\ \Rightarrow\dfrac{3^2-3}{2\cdot3+1}\\ =\dfrac{9-3}{6+1}\\ =\dfrac{6}{7}\)
`b,` Ta có `M=A*B`
\(M=\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\cdot\dfrac{x^2-x}{2x+1}\\ =\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+\text{ }1}\\ =\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x}{x+1}\)
`c,` Để `M=1/2`
`=> x/(x+1)=1/3`
`<=> (3x)/(3(x+1))= (x+1)/(3(x+1))`
`<=> 3x=x+1`
`<=>3x-x=1`
`<=>2x=1`
`<=>x=1/2`