a: \(A=\dfrac{x^2+2-2x\left(x-2\right)+\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2-2x^2+4x+x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\)
Khi x=5 thì \(A=\dfrac{4\cdot5+1}{\left(5-2\right)\left(5+1\right)}=\dfrac{21}{3\cdot6}=\dfrac{7}{6}\)
b: P=A:B
\(=\dfrac{4x+1}{\left(x-2\right)\left(x+1\right)}\cdot\dfrac{x-2}{1}=\dfrac{4x+1}{x+1}\)
c: P^2=P+2
=>P^2-P-2=0
=>(P-2)(P+1)=0
=>P=2 hoặc P=-1
=>4x+1=2x+2 hoặc 4x+1=-x-1
=>2x=1 hoặc 5x=-2
=>x=-2/5(nhận) hoặc x=1/2(nhận)