x-\(3\sqrt{x}\)=0
Tìm x
Các bạn giúp mình nha
(x-2/5).(x+2/7)>0
( 2x-1/2).(3x-1/3)<0
x+3/2 phần x-2/3 <0
Tìm x
Các bạn giúp mk nha mk cần gấp
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
x/2 + x+ x/3 + x+ x + x/4 =23/4 . tìm x
các bạn giải giúp mình nhé!!
cảm ơn nhiều
x/2+x+x/3+x+x+x/4=23/4
⇒ 6x/12+12x/12+4x/12+12x/12+12x/12+3x/12=23/4
⇒ (6x+12x+4x+12x+12x+3x)/12=23/4
⇒ 49x/12=23/4
⇒ 49x=23/4.12
⇒ 49x=69
⇒ x=69/49
Giải:
\(\dfrac{x}{2}+x+\dfrac{x}{3}+x+x+\dfrac{x}{4}=\dfrac{23}{4}\)
\(x.\left(\dfrac{1}{2}+1+\dfrac{1}{3}+1+1+\dfrac{1}{4}\right)=\dfrac{23}{4}\)
\(x.\dfrac{49}{12}=\dfrac{23}{4}\)
\(x=\dfrac{23}{4}:\dfrac{49}{12}\)
\(x=\dfrac{69}{49}\)
(\(x^2\)-1)\(\sqrt[]{x}\)=-0
tìm x
giúp mình nha mình tick cho
ĐK:\(x\ge0\)
\(\left(x^2-1\right)\sqrt{x}=0\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x}=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\\x=0\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Ủa lớp 7 sao học căn r nè
Các bạn giúp mình bài này nhé, ai nhanh mình tick cho
đề bài: tìm số đo x
Các bạn ghi rõ cách làm ra nhé
|x - 5| + |x -11| = 3x, tìm x
các bạn giúp mk với ạ
\(\left|x-5\right|+\left|x-11\right|=3x\) (1)
+, \(x< 5\) thì \(\left(1\right)\) trở thành:
\(-\left(x-5\right)+\left[-\left(x-11\right)\right]=3x\)
\(\Rightarrow-2x+16=3x\)
\(\Rightarrow-5x=-16\Leftrightarrow x=\dfrac{16}{5}\left(tm\right)\)
+, \(5\le x< 11\) thì (1) trở thành:
\(x-5-\left(x-11\right)=3x\)
\(\Rightarrow6=3x\Leftrightarrow x=2\left(ktm\right)\)
+, \(x\ge11\) thì (1) trở thành:
\(x-5+x-11=3x\)
\(\Rightarrow2x-16=3x\)
\(\Rightarrow-x=16\Leftrightarrow x=-16\left(ktm\right)\)
Vậy \(x=\dfrac{16}{5}\)
Một hợp chất X tạo bởi 3 nguyên tố, trong đó Mg chiếm 27,48%;; P chiếm 23,66%, còn lại là Oxi. Tìm công thức hóa học của hợp chất X
CÁC BẠN GIÚP MÌNH VỚI !!!!!
$\%O = 100\% -27,48\% - 23,66\% = 48,86\%$
Gọi CTHH cần tìm là $Mg_xP_yO_z$
Ta có :
\(x:y:z=\dfrac{27,48}{24}:\dfrac{23,66}{31}:\dfrac{48,66}{16}=3:2:8\)
Vậy CTHH cần tìm là $Mg_3P_2O_8$ hay $Mg_3(PO_4)_2$
Tìm giá trị nhỏ nhất của biểu thức:
A= x^2-x
Các bạn giúp tớ với ạ.
\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
A= x^2-x
A= (x-1/2)^2-1/4
ta thấy (x-1/2)^2\(\ge\)0
=>(x-1/2)^2-1/4\(\ge\)-1/4
hay A\(\ge\)-1/4
vậy \(A_{min}\)=-1/4<=>x=1/2
Các bạn ơi giải giúp mik bài này nha:
Tìm x bằng phương pháp đặt ẩn phụ:
1, \(x^3+2=3\sqrt[3]{3x-2}\)
2,\(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
3,\(\sqrt{1-x}+\sqrt{1+x}+\frac{x^2}{4}=2\)
Các bạn ơi làm giúp mình nha mình đang cần gấp lắm mấy bạn giúp mk nha . Mk sẽ tick 4 tick cho bạn nào nhanh nhất . Chân thành cảm ơn...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
1/ \(x^3+2=3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ
\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)
Lấy trên - dưới ta được
\(x^3-a^3+3x-3a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow x=a\)
\(\Leftrightarrow x=\sqrt[3]{3x-2}\)
\(\Leftrightarrow x^3-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
2/ \(x+\sqrt{5-x^2}+x\sqrt{5-x^2}=5\)
Đặt \(\sqrt{5-x^2}=a\ge0\) thì ta có hệ
\(\hept{\begin{cases}x+a+ax=5\\a^2+x^2=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+a+ax=5\\\left(a+x\right)^2-2ax=5\end{cases}}\)
Tới đây thì đơn giản rồi. Đặt \(\hept{\begin{cases}a+x=S\\ax=P\end{cases}}\) giải tiếp sẽ ra
x(x+1)-(x-2)(x+1)=0
tìm x
giúp mình với ạ
x(x+1)-(x-2)(x+1)=0
\(\left(x+1\right)\left(x-x+2\right)=0\\ \left(x+1\right)\cdot2=0\\ =>x+1=0\\ x=0-1\\ x=-1\)
=>(x+1)(x-x+2)=0
=>x+1=0
=>x=-1