Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
23 tháng 5 2017 lúc 8:55

Ôn tập cuối năm môn hình học 12

Ôn tập cuối năm môn hình học 12

Phạm Dương Ngọc Nhi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 13:41

Vectơ trong không gian, Quan hệ vuông góc

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:43

loading...

a) Vì \(ABCD.A'B'C'D'\) là hình lăng trụ nên có:

‒ Hai đáy \(ABCD\) và \(A'B'C'D'\) bằng nhau và là hình bình hành.

‒ Các mặt bên \(AA'B'B,AA'D'D,BB'C'C,CC'D'D\) là các hình bình hành.

b) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {AA'C'C} \right) \cap \left( {ABC{\rm{D}}} \right) = AC\\\left( {AA'C'C} \right) \cap \left( {A'B'C'D'} \right) = A'C'\end{array} \right\} \Rightarrow AC\parallel A'C'\)

Mà \(AA'\) và \(CC'\) là các cạnh bên của hình lăng trụ nên \(AA'\parallel CC'\)

Vậy \(AA'C'C\) là hình bình hành.

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {BB'D'D} \right) \cap \left( {ABC{\rm{D}}} \right) = B{\rm{D}}\\\left( {BB'D'D} \right) \cap \left( {A'B'C'D'} \right) = B'D'\end{array} \right\} \Rightarrow B{\rm{D}}\parallel B'D'\)

Mà \(BB'\) và \(DD'\) là các cạnh bên của hình lăng trụ nên \(BB'\parallel DD'\)

Vậy \(BB'D'D\) là hình bình hành.

c) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = C{\rm{D}}\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {A'B'C'D'} \right) = A'B'\end{array} \right\} \Rightarrow C{\rm{D}}\parallel A'B'\left( 1 \right)\)

\(ABC{\rm{D}}\) là hình bình hành nên \(AB = CD\)

\(AA'B'B\) là hình bình hành nên \(AB = A'B'\)

Vậy \(A'B' = CD\left( 2 \right)\)

Từ (1) và (2) suy ra \(A'B'C{\rm{D}}\) là hình bình hành

\( \Rightarrow A'C,B'D\) cắt nhau tại trung điểm của mỗi đường.

Chứng minh tương tự ta có:

+ \(ABC'D'\) là hình bình hành nên \(AC',B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

+ \(A'BCD'\) là hình bình hành nên \(A'C,B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

Do đó bốn đoạn thẳng \(A'C,AC',B'D,BD\) có cùng trung điểm.

Ngô Chí Thành
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 11:32

1.

\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)

\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)

\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)

\(\Rightarrow MN\perp AC'\)

b.

\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)

Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)

\(\Rightarrow AC'\perp\left(A'BD\right)\)

Nguyễn Việt Lâm
18 tháng 3 2021 lúc 11:40

2.

Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)

Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)

Thay \(x=1\) vào:

\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)

\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)

Khi đó:

\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)

\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)

\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)

\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)

\(\Rightarrow2bx^2-2bx-3x^2+3=0\)

\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)

\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)

Ngưu Kim
Xem chi tiết
NGUYỄN ANH THƯ THCS SÔNG...
5 tháng 2 2020 lúc 20:50

undefined

Khách vãng lai đã xóa
Tài khoản bị khóa
Xem chi tiết
Hoàng Tử Hà
18 tháng 1 2021 lúc 21:20

Có MC=2MI mà MI là đường trung tuyến của của \(\Delta ABC\) 

=>M là trọng tâm của tam giác ABC=>A,M,H thẳng hàngTrong mp(SAH)có :AN=2NS;AM=2MH=>MN//SH (Thales)Mà \(SH\perp\left(ABC\right)\);SH ko thuộc (ABC)=>MN vuông góc với (ABC)

P/s: Gợi ý này ok rồi nhé :> Mà sao ko thấy kí hiệu "ko thuộc" nhờ :v

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 10:05

Vectơ trong không gian, Quan hệ vuông góc

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 5 2019 lúc 13:48