Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn là AD và AD = 2BC. Gọi O là giao điểm của AC và BD, G là trọng tâm của tam giác SCD
a) Chứng minh rằng OG // (SBC)
b) Cho M là trung điểm của SD. Chứng minh rằng CM // (SAB)
c) Giả sử điểm I nằm trong đoạn SC sao cho \(SC=\dfrac{3}{2}SI\). Chứng minh rằng SA // (BID)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O.Gọi I,J lần lượt là trung điểm BC,SC, K(SD sao cho SK=KD.
a> Cm: OJ//(SAD), OJ//(SAB)
B>CM: OI//(SCD), IJ//(SBD)
C> Gọi M là giao điểm cũa AI và BD. CM MK//(SBC)
cần gấp ạ!
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Một mặt phẳng \(\left(\alpha\right)\) cắt SB, SC và CD lần lượt tại N, P và Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định ?
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình vuông ABCD, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi I là trung điểm của AB, K là trung điểm của AD. Chứng minh: a. (SAD) vuông góc với (SAB) b. (SID) vuông góc với (ABCD) c. (SID) vuông góc (SKC)
Cho hình chóp S.ABCD gọi MN lần lượt là trung điểm của AB và BC. G1, G2 là trọng tâm của tam giác SAB, SBC. Chứng minh AC // (SMN)
G1,G2 // (SAC)
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi K là trung điểm của SC. Chứng minh rằng : KO // ( SAB).