Cho hai hàm số: y = x2 và y - x +2
1. Vẽ đồ thị của 2 hàm số trên trên cùng hệ trục xOy (cái này mình làm dc)
2. Gọi M là giao điểm có hoành độ âm của 2 đồ thị đã vẽ ở câu 1. CMR: OM vuông góc vs đường thẳng y = x + 2
1. Cho hàm số y=(m-1,5)x + 5m
a/ Tìm m biết đồ thị hàm số đã cho cắt trục hoành tại điểm có hoành độ=-1
b/ CMR đồ thị hàm số đã cho luôn đi qua 1 điểm cố định với mọi m
2.a/ Vẽ đồ thị 2 hàm số sau trên cùng 1 hệ trục tọa độ: y=|x+2| và y=|2x|
b/ Tìm tọa độ giao điểm của 2 đồ thị trên
Câu 3: Cho các hàm số \(y=2x+5\) và \(y=-x+2\)
a. Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng toạ độ Oxy.
b. Dựa vào hình vẽ, xác định toạ độ giao điểm A của hai đồ thị hàm số.
c. Hai đồ thị của hai hàm số đã cho cắt trục hoành tại các điểm B và C. Tính diện tích tam giác ABC
\(b,\text{PT hoành độ giao điểm: }2x+5=-x+2\Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow A\left(-1;3\right)\\ c,\text{PT 2 đt giao Ox: }\left\{{}\begin{matrix}y=0\Rightarrow x=-\dfrac{5}{2}\Rightarrow B\left(-\dfrac{5}{2};0\right)\\y=0\Rightarrow x=2\Rightarrow C\left(2;0\right)\end{matrix}\right.\\ \Rightarrow BC=OB+OC=\dfrac{5}{2}+2=\dfrac{9}{2}\\ \text{Gọi H là chân đường cao từ A tới BC}\\ \Rightarrow AH=\left|y_A\right|=3\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot3\cdot\dfrac{9}{2}=\dfrac{27}{4}\left(đvdt\right)\)
cho hai hàm số bậc nhất y=-2x+5 (d) và y=0,5x (d')
a) vẽ đồ thị (d) và (d') của 2 hàm số đã cho trên cùng 1 hệ tọa độ Oxy
b) tìm tọa độ điểm M là giao điểm của 2 đồ thị vừa vẽ ( bằng phép tính )
c) Tính góc α tạo bởi đường thẳng d với trục hoành Ox ( làm tròn kết quả đến độ)
d) Gọi giao điểm của d với trục Oy là A, tính chu vi và diện tích tam giác MOA
a, vẽ đồ thị hàm số y=-x2 và y=x-2 trên cùng một hệ trục toạ độ b, Tìm toạ độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính.
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(x^2+x-2=0\)ta có a + b + c = 1 + 1 - 2 = 0
Vậy pt có 2 nghiệm x = 1 ; x = 2
Với x = 1 => y = -1
Với x = 2 => y = -4
Vậy (P) cắt (d) tại A(1;-1) ; B(2;-4)
Cho hàm số bậc nhất y=-2x -5 (d) và y= -x (d') A. Vẽ đồ thị d và d' của 2 hàm số đã cho trêb cùng 1 hệ tọa đọi Oxy B. Tìm tọa độ điểm M là giao điểm của 2 đồ thị vừa vẽ ( bằng phép tính) C. Tính góc alpha tạo bởi đường thẳng d với trục hoành Ox ( làm tròn kết quả đến độ) D. Gọi giao điểm của d với trục Oy là A, tính chu vi và diện tích tam giác MOA ( đơn vị đo trên các trục tọa độ là cm)
a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)
b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)
\(\Rightarrow M\left(-5;5\right)\)
c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)
\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)
\(\left(d'\right):y=-x\Rightarrow k_1-1\)
\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)
\(\Rightarrow\widehat{M}\sim18^o\)
d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)
\(\Leftrightarrow y=-2.0-5=-5\)
\(\Rightarrow A\left(0;-5\right)\)
\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)
\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)
\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)
Chu vi \(\Delta MOA:\)
\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)
\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)
\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)
\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)
\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)
\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)
Diện tích \(\Delta MOA:\)
\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)
\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)
\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)
x | 0 | -5/2 | 1 |
y=-2x-5 | -5 | 0 | |
y=-x | 0 | -1 |
*) Đồ thị:
b) Phương trình hoành độ giao điểm của (d) và (d'):
\(-2x-5=-x\)
\(\Leftrightarrow-2x+x=5\)
\(\Leftrightarrow x=-5\) \(\Rightarrow y=-\left(-5\right)=5\)
Vậy tọa độ giao điểm của (d) và (d') là \(M\left(-5;5\right)\)
c) Ta có:
\(tanB=\dfrac{OA}{OB}=\dfrac{-5}{-\dfrac{5}{2}}=2\)
\(\Rightarrow\widehat{B}\simeq63^0\)
Mà góc tạo bởi d với trục hoành là \(\widehat{OBM}\)
\(\Rightarrow\widehat{OBM}\simeq180^0-63^0=117^0\)
d) Ta có:
\(OM^2=5^2+5^2=50\)
\(\Rightarrow OM=5\sqrt{2}\left(cm\right)\)
\(AM^2=5^2+10^2=125\)
\(\Rightarrow AM=5\sqrt{5}\left(cm\right)\)
Chu vi \(\Delta MOA\):
\(5\sqrt{2}+5\sqrt{5}+5=5\left(\sqrt{2}+\sqrt{5}+1\right)\left(cm\right)\)
Diện tích \(\Delta MOA\)
\(S_{MOA}=\dfrac{MH.OA}{2}=\dfrac{5.5}{2}=25\left(cm^2\right)\)
Cho hai hàm số y=2x2 có đồ thị (P) và y=x+3 có đồ thị (d).
a) Vẽ các đồ thị (P) và (d) trên cùng một mặt phẳng tọa Oxy.
b) Gọi A là giao điểm của hai đồ thị (P) và (d) có hoành độ âm. Viết phương trình của đường thẳng (Δ) đi qua A và có hệ số góc bằng -1.
c) Đường thẳng (Δ) cắt trục tung tại C, cắt trục hoành tại D. Đường thẳng (d) cắt trục hoành tại B. Tính tỉ số diện tích của hai Δ ABC và ΔABD.
Cho hàm số \(y=\left(a-1\right)x+a\)
a) Xác định giá trị của a để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2
b) Xác định giá trị của a để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3
c) Vẽ đồ thị của hai hàm số ứng với giá trị của a tìm được ở các câu a), b) trên cùng hệ trục tọa độ Oxy và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được
Bài 1: Cho hàm số y=ax^2
a) Xác định a biết đồ thị của hàm số đi qua A(3;3)
b) Vẽ đồ thị hàm số vừa tìm được ở câu a
c) Tìm điểm thuộc đồ thị có tung độ bằng 1
Bài 2: Cho hai hàm số: y=x^2 (P) và y=2x (d)
a) vẽ đồ thị (P) và (d) của hai hàm số trên cùng một hệ trục tọa độ
b) Tìm tọa độ gioa điểm của (P) và (d)
Bài 3: Cho hai hàm số y= (m+1)x^2 và y= 2x-1.
Tìm m biết rằng đồ thị của hai hàm số cắt nhau tại điểm có hoành độ bằng 2
cho hai hàm số \(y=x^2\) và \(y=x+2\)
a, vẽ đồ thị của hai hàm số này tren cùng một hệ trục Oxy
b, tìm toạ độ các giao điểm M, N của hai đồ thị trên bằng phép tính
a, bạn tự kẻ hình nha
b,Phương trình hoành độ giao điểm của 2 đồ thị
\(x^2=x+2\) hay \(x^2-x-2=0\)
Phương trình có nghiệm: \(x_1=-1\Rightarrow y_1=1\) và \(x_2=2\Rightarrow y_2=4\)
Vậy 2 đồ thị cắt nhau tại 2 điểm \(M\left(-1;1\right)\) và \(N\left(2;4\right)\)
-Chúc bạn học tốt-