So sánh :
a)339 và 1121
b)321 và 231
c)202303 và 303202
So sánh: 202 303 và 303 202
A. 202 303 > 303 202
B. 202 303 < 303 202
C. 202 303 = 303 202
D. Không thể so sánh
Ý A nhé bạn
chúc học tốt
so sánh
202303 và 303202
202³⁰³ = (202³)¹⁰¹ = 8242408¹⁰¹
303²⁰² = (303²)¹⁰¹ = 91809¹⁰¹
Do 8242408 > 91809 nên 8282408¹⁰¹ > 91809¹⁰¹
Vậy 202³⁰³ > 303²⁰²
202303 & 303202
202303 = (2023)101 = 8242408101
303202 = (3032)101 = 91809101
⇒ 202303 > 303202
Bài 1: So sánh
1/ a) 2300 và 3200 b) 9920 và 999910 c) 3500 và 7300
d) 202303 và 303202 e) 10750 và 7375
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)
\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)
so sánh
A)339 và 1121
B)291và 535
\(a,3^{39}=\left(3^3\right)^{13}=9^{13}< 11^{13}< 11^{21}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7< 3125^7=\left(5^5\right)^7=5^{35}\)
So sánh bằng cách thuận tiện nhất:
a, \(\dfrac{404303}{303202}\).......\(\dfrac{303202}{202101}\)
b, \(\dfrac{101202}{202303}\).......\(\dfrac{202303}{303404}\)
Cứu mk với. Ai làm đúng mk sẽ tick đúng cho (và phải nhanh nhé, mk đang cần gấp)
so sánh
339/322 và 338/321
2017/2014 và 2018/2015
511/514 và 513/516
3005/3000 và 3010/3005
\(\frac{339}{322}\)và \(\frac{338}{321}\)
Ta có : \(\frac{339}{322}-1=\frac{17}{322};\frac{338}{321}-1=\frac{17}{321}\).
Vì \(\frac{17}{322}< \frac{17}{321}\)nên \(\frac{339}{322}< \frac{338}{321}\).
\(\frac{2017}{2014}\)và \(\frac{2018}{2015}\)
Ta có : \(\frac{2017}{2014}-1=\frac{3}{2014};\frac{2018}{2015}-1=\frac{3}{2015}\)
Vì \(\frac{3}{2014}>\frac{3}{2015}\)nên \(\frac{2017}{2014}>\frac{2018}{2015}\).
\(\frac{511}{514}\)và \(\frac{513}{516}\)
Ta có : \(1-\frac{511}{514}=\frac{3}{514};1-\frac{513}{516}=\frac{3}{516}\)
Vì \(\frac{3}{514}>\frac{3}{516}\)nên \(\frac{511}{514}< \frac{513}{516}\).
\(\frac{3005}{3000}\)và \(\frac{3010}{3005}\)
Ta có : \(\frac{3005}{3000}-1=\frac{5}{3000};\frac{3010}{3005}-1=\frac{5}{3005}\)
Vì \(\frac{5}{3000}>\frac{3}{3005}\)nên \(\frac{3005}{3000}>\frac{3010}{3005}\).
~ Chúc bn hok tốt ~
so sánh
575 và 760 339 và 1121
Ta có:
\(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
Mà: \(3125^{15}>2401^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
_______________
Ta có:
\(3^{39}< 3^{42}\); \(3^{42}=\left(3^6\right)^7=729^7\)
\(11^{21}=\left(11^3\right)^7=1331^7\)
Mà: \(729^7< 1331^7\)
\(\Rightarrow3^{42}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
a) \(5^{75}=\left(5^5\right)^{15}=3125^{15}\)
\(7^{60}=\left(7^4\right)^{15}=2401^{15}\)
mà \(2401^{15}< 3125^{15}\)
\(\Rightarrow5^{75}>7^{60}\)
b) \(3^{39}=\left(3^{13}\right)^3=1594323^3;11^{21}=\left(11^7\right)^3=19487171^3\)
mà \(19487171^3>1594323^3\)
\(\Rightarrow3^{39}< 7^{21}\)
575 = (55)15= 312515
760= (74)15 = 240115
Vì: 312515 > 240115 (3125 > 2401) => 575 > 760
Các bn ơi, cho mk hỏi:
so sánh các số sau:
a) 7.213 và 216 b) 19920 và 200315
c) 202303 và 303202
Nhanh nhé, mk đâng gấp
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
so sánh 339 và 1126
331 > 231 Vì:
Hai số trên cùng số mũ nên bỏ số mũ đi, ta được: ⇒ 3 và 2 mà 3 > 2
⇒ 331 > 231
A = 339 = (33)13 = 2713
B = (112)13 = 12113
Vì 27 < 121 nên 2713 < 12113
Vậy 339 < 1126
Bài 1: So sánh
1/ a) 85 và 3.47 b) 637 và 1612 c) 1714 và 3111
d) 339 và 1121 e) 7245 - 7244 và 7244 - 7243
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³