Tìm các giá trị của tham số m để phương trình sau x²+ 2mx +7m²–6m=0 a.vô nghiệm b. có nghiệm
Tìm giá trị tham số m để phương trình sau có nghiệm lớn nhất nhỏ nhất :
\(x^4+2x^2+2mx+m^2-6m+1=0\)
Tìm các giá trị của tham số m để các bất phương trình sau nghiệm đúng với mọi x
m ( m + 2 ) x 2 + 2 m x + 2 > 0
+ Nếu m = 0 thì bất phương trình nghiệm đúng với mọi x;
+ Nếu m = -2 thì bất phương tình trở thành – 4x + 2 > 0, không nghiệm đúng với mọi x.
+ Nếu m ≠ 0 và m ≠ -2 thì bất phương trình nghiệm đúng với mọi x khi và chỉ khi
Đáp số: m < -4; m ≥ 0
Tìm m để phương trình : \(x^2-2mx+m^2+6m+10=0\) có 2 nghiệm . Tìm giá trị nhỏ nhất của P=
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+6m+10\end{matrix}\right.\)
\(P=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m\right)^2-3\left(m^2+6m+10\right)\\ =4m^2-3m^2-18m-30\\ =m^2-18m-30\\ =\left(m^2-18m+81\right)-111\\ =\left(m-9\right)^2-111\ge-111\)
Dấu "=" xảy ra\(\Leftrightarrow m=9\)
Vậy \(P_{min}-111\Leftrightarrow m=9\)
\(\Delta'=\left(-m\right)^2-\left(m^2-6m-10\right)=m^2-m^2-6m-10=-6m-10\)
Để pt có 2 nghiệm thì\(\Delta'\ge0\Rightarrow-6m-10\ge0\Rightarrow6m+10\le0\Rightarrow m\le-\dfrac{5}{3}\)
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x3 – 7mx2 + 2(m2 + 6m)x – 64 = 0.
A. m = 8
B. m = 0
C. m = -1hoặc m = 7
D. m = 0 hoặc m = 8
Chọn A.
+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x1; x2; x3 lập thành một cấp số nhân.
Theo định lý Vi-ét, ta có x1.x2.x3 = 64
Theo tính chất của cấp số nhân, ta có x1x3 = x22. Suy ra ta có x23 = 64 ⇔ x2 = 4
Thay x = 4 vào phương trình đã cho ta được: 43 – 7m.42 + 2(m2 + 6m).4 – 64 = 0
⇔ m2 – 8m = 0
+ Điều kiện đủ: Với m = 0 thay vào phương trình đã cho ta được: x3 – 64 = 0 hay x = 4
(nghiệm kép-loại)
Với m = 8 thay vào phương trình đã cho nên ta có phương trình x3 – 56x2 + 224x – 64 = 0
Giải phương trình này, ta được 3 nghiệm phân biệt lập thành cấp số nhân.
Vậy m = 8 là giá trị cần tìm.
Tìm tất cả các giá trị của tham số m để phương trình x^4-2mx^2+3m+1=0 có 4 nghiệm phân biệt
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
Lời giải:
a)
Ta có: $\Delta'=m^2-(2m-2)=m^2-2m+2=(m-1)^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm phân biệt $x_1,x_2$ với mọi $m\in\mathbb{R}$
b)
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2m\\ x_1x_2=2m-2\end{matrix}\right.\)
Để $x_1^2+x_2^2-3x_1x_2=4$
$\Leftrightarrow (x_1+x_2)^2-5x_1x_2=4$
$\Leftrightarrow (-2m)^2-5(2m-2)=4$
$\Leftrightarrow 4m^2-10m+6=0$
$\Leftrightarrow 2m^2-5m+3=0$
$\Leftrightarrow (m-1)(2m-3)=0$
$\Rightarrow m=1$ hoặc $m=\frac{3}{2}$ (đều thỏa mãn)
Tìm tất cả các giá trị của tham số m để phương trình \(x^2-2mx+m+2=0\) có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x^3_1+x_2^3\le16\)
Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)
Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).
Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).
Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)
(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).
Kết hợp vs (1) ta có m < -1.
Tìm các giá trị tham số m để phương trình x^2 - 2mx + 2m -1=0 có hai nghiệm x1;x2 sao cho \(\left(x_1^2-2mx+3\right)\left(x_2^2-2mx-2\right)=50\)
Bạn ơi, bạn xem lại đề có được không ạ? Là \(\left(x_1^2-2mx_1+3\right)\left(x_2^2-2mx_2-2\right)=50\) hay sao ạ?
Cho phương trình x2 - 2mx + m - 2 = 0 ( m là tham số )
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m
b) Gọi x1 ; x2 là các nghiệm của phương trình. Tìm giá trị của m để biểu thức
\(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}\) đạt giá trị nhỏ nhất
a: Δ=(-2m)^2-4(m-2)
=4m^2-4m+8=(2m-1)^2+7>=7>0
=>PT luôn có hai nghiệm phân biệt
b: x1^2+x2^2-6x1x2
=(x1+x2)^2-8x1x2
=(2m)^2-8(m-2)
=4m^2-8m+16=(2m-2)^2+8>=8
=>24/(2m-2)^2+8<=3
=>M>=-3
Dấu = xảy ra khi m=1