Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 20:52

a: Gọi I là trung điểm của CM

Xét (I) có

ΔCDM nội tiếp

CM là đường kính

Do đó: ΔCDM vuông tại D

=>góc CDM=góc CDB=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: Xét ΔCAB có CO/CB=CM/CA=1/2

nên OM//AB

=>OM vuông góc AC tại M

=>OM là tiếp tuyến của (I)

Vu nguyen
31 tháng 8 2023 lúc 21:04

a) Để chứng minh A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh tứ giác ABCD là tứ giác nội tiếp. Ta có:

- Góc BAD = góc BAC (cùng chắn cung BC)

- Góc BCD = góc BCA (cùng chắn cung BA)

Do đó, góc BAD + góc BCD = góc BAC + góc BCA = 90 độ (vì tam giác ABC vuông tại A)

Suy ra, tứ giác ABCD là tứ giác nội tiếp.

 

b) Để chứng minh OM là tiếp tuyến của đường tròn đường kính MC, ta cần chứng minh OM vuông góc với MC. Ta có:

- Góc OMB = góc ONB (cùng chắn cung OB)

- Góc ONB = góc MNB (do tam giác MNB vuông tại N)

- Góc MNB = góc MCB (do tam giác MCB vuông tại C)

- Góc MCB = góc ACB (do tam giác ABC vuông tại A)

Do đó, góc OMB = góc ACB

Suy ra, OM vuông góc với MC.

Vậy OM là tiếp tuyến của đường tròn đường kính MC.

phạm hoàng
Xem chi tiết
boylanhlungfanT
Xem chi tiết
Tú Lê Anh
21 tháng 3 2018 lúc 21:15

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K

anh phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 17:18

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

hay AH⊥BC

b: Sửa đề: M là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HM là đường trung tuyến

nên HM=AM=AC/2

Xét ΔMAO và ΔMHO có

MA=MH

MO chung

OA=OH

Do đó: ΔMAO=ΔMHO

Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)

hay HM là tiếp tuyến của (O)

Vyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 20:09

loading...  

Vũ Thị Lan Oanh
Xem chi tiết
Đoàn Đức Hà
24 tháng 5 2022 lúc 20:35

a) Ta có: \(\widehat{AMO}=\widehat{ADO}=\widehat{ANO}=90^o\) nên \(M,N,D\) cùng nhìn \(AO\) dưới một góc vuông suy ra \(M,D,O,N,A\) cùng thuộc một đường tròn. 

b) Gọi \(F\) là giao điểm của \(AC\) và đường tròn \(\left(O\right)\).

\(\Delta ANF\sim\Delta ACN\left(g.g\right)\) suy ra \(AN^2=AC.AF\).

Xét tam giác \(AHN\) và tam giác \(AND\):

\(\widehat{HAN}=\widehat{NAD}\) (góc chung) 

\(\widehat{ANH}=\widehat{ADN}\) (vì \(AMDON\) nội tiếp, \(\widehat{ANH},\widehat{ADN}\) chắn hai cung \(\stackrel\frown{AM},\stackrel\frown{AN}\) mà \(AM=AN\))

\(\Rightarrow\Delta AHN\sim\Delta AND\left(g.g\right)\)

suy ra \(AN^2=AH.AD\)

suy ra \(AC.AF=AH.AD\)

\(\Rightarrow\Delta AFH\sim\Delta ADC\left(c.g.c\right)\Rightarrow\widehat{AFH}=\widehat{ADC}=90^o\)

suy ra \(\widehat{HFC}=90^o\) mà \(\widehat{BFC}=90^o\) (do \(F\) thuộc đường tròn \(\left(O\right)\))

suy ra \(B,H,F\) thẳng hàng do đó \(BH\) vuông góc với \(AC\).

Tam giác \(ABC\) có hai đường cao \(AD,BF\) cắt nhau tại \(H\) suy ra \(H\) là trực tâm tam giác \(ABC\)

Hei Cheng
23 tháng 5 2022 lúc 22:22

Bạn check lại và đánh lại đề để mình có thể giúp đỡ nha.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 9 2019 lúc 6:04

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

Nguyễn Phúc Thiên
Xem chi tiết
Tiến Đỗ
Xem chi tiết