a: góc OAC+góc OHC=180 độ
=>OACH nội tiếp
b: Xét ΔOKM vuông tại K và ΔOHC vuông tại H có
góc O chung
=>ΔOKM đồng dạng với ΔOHC
=>OK/OH=OM/OC
=>OK*OC=OH*OM
a: góc OAC+góc OHC=180 độ
=>OACH nội tiếp
b: Xét ΔOKM vuông tại K và ΔOHC vuông tại H có
góc O chung
=>ΔOKM đồng dạng với ΔOHC
=>OK/OH=OM/OC
=>OK*OC=OH*OM
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho tam giác ABC vuông tại A . Đường tròn (O) đường kính AB cắt BC tại H . Tia phân giác của góc HAC cắt DC tại E và cắt đường tròn (O) tại B .
a) Chứng minh: AH\(\perp BC\)
b) Gọi M là trung điểm của AB . Chứng minh HM là tiếp tuyến của đường tròn tâm O
c) Chứng minh: DA. DE=DC\(^2\)
Cho đường tròn (O; R). Từ điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là trung điểm của BC
a, Chứng minh ba điểm A, H, O thẳng hàng và các điếm A, B, C, O cùng thuộc một đường tròn
b, Kẻ đường kính BD của (O). Vẽ CK vuông góc vói BD. Chứng minh AC.CD = CK.AO
c, Tia AO cắt đường tròn (O) tại M (M nằm giữa A và O). Chứng minh M là tâm đường tròn nội tiếp tam giác ABC
d, Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK
Cho tam giác ABC nhọn có AB < AC, đường cao AD. Đường tròn tâm ),đường kính BC. Vẽ AM và AN là hai tiếp tuyến của đường tròn.
a. Chứng minh 5 điểm M, N, O, D. A cùng thuộc một đường tròn
b. Gọi MN cắt AD tại H. Chứng minh H là trực tâm tam giác ABC
Cho tam giác ABC vuông tại A (AB<AC). Đường tròn (O) đường kính AC cắt BC tại H
a. Chứng minh AH ⊥ BC
b. Gọi M là trung điểm của Ab. Chứng minh HM là tiếp tuyến của(O)
c. Tia phân giác của góc HAC cắt BC tại E và cắt (O) tại D. Chứng minh DA.DE=DC2
d. Trường hợp AB=12cm, AC=16cm. Tính bán kính đường tròn nội tiếp ΔAMN
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho điểm C thuộc đường tròn tâm O đường kính AB( AC<BC). Gọi H là trung điểm BC. Tiếp tuyến tại B của đường tròn (O) cắt tia OH tại D.
a) Chứng minh rằng : DH.DO = DB2
b) Chứng minh DC là tiếp tuyến của đường tròn (O)
c) Đường thẳng AD cắt đường tròn (O) tại E. Gọi M là trung điểm AE. Chứng minh 4 điểm D,B,M,C cùng thuộc một đường tròn
d) Gọi I là trung điểm DH, BI cắt đường tròn (O) tại F. Chứng minh ba điểm A,H,F thẳng hàng.
Bài 1: Cho nữa đường tròn tâm O đường kính AB. Lấy M trên (O) và tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) ở C và D; AM cắt OC tại E, BM cắt OD tại F.
a) Chứng minh <COD= 90
b) Tứ giác MEOF là hình gì?
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Bài 2: Cho tam giác ABC có hai đường cao BD, CE cắt nhau tại H.
a) Chứng minh bốn điểm A, D, H, E cùng nằm trên đường tròn (O)
b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến của (O).
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A. a) Chứng minh tam giác ABC vuông. b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2