Cho hình thang $A B C D$ có $\widehat{A}=\widehat{D}=90^{\circ}, A D=4 A B, C D=3 A B$. Gọi $M$ là trung điểm của $A D, E$ là hình chiếu vuông góc của $M$ lên $B C$. Tia $B M$ cắt đường thẳng $C D$ tại $F$.
a) Chứng minh rằng $\widehat{M A E}=\widehat{M B E}$.
b) Chứng minh rằng $A B D F$ là hình bình hành.
c) Đường thẳng qua $M$ vuông góc với $B F$ cắt cạnh $B C$ tại $N$. Gọi $H$ là hình chiếu vuông góc của $N$ lên $C D$. Chứng minh rằng tam giác $B N F$ cân.
d) Chứng minh rằng đường thẳng $M H$ đi qua trung điểm của $D E$.