Cho biết x^2-5x+1=0. Tính x^2/x^4+1
Cho các biểu thức sau
A = \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x-6}{4-x^2}\)
B = \(\dfrac{x+1}{x^2+3x+2}\)
a. Rút gọn A, B
b. tính giá trị của A biết x2 + x = 0
Tính giá trị của B biết x2 + 2x = 0
\(a,ĐK:x\ne\pm2\\ A=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\\ ĐK:x\ne-1;x\ne-2\\ B=\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ b,x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \forall x=0\Leftrightarrow A=\dfrac{1}{0-2}=-\dfrac{1}{2}\\ \forall x=-1\Leftrightarrow A=\dfrac{1}{-1-2}=-\dfrac{1}{3}\)
\(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ \Leftrightarrow B=\dfrac{1}{0+2}=\dfrac{1}{2}\)
.Cho biểu thức A = ( x - 5 ) ( x2 + 5x + 25) - ( x – 2)(x+ 2) + x.(x2 + x + 4)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A biết x = -2
b) Tính giá trị biểu thức A biết x2 – 1 = 0
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
Giúp mik vs ạ
Bài 1:Tìm x
a) (x-3)2-4=0
b) x2-2x=24
c) (2x-1)2+(x+3)2-5(x+2)(x-2)=0
d) (5x-1)2-(5x-4)(5x+4)=7
Bài 2 :Cho x+y=-9.Tính D=x2+2xy+y2-6x-6y-5
Bài 3:Tìm x,y biết
a)4x2+y2-4x+10y+26=0
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
Bài 2 :
\(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)
Thay x + y = -9 ta có :
\(\left(-9\right)^2-6\left(-9\right)-5=130\)
Bài 1.
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) x2 - 2x = 24
<=> x2 - 2x - 24 = 0
<=> x2 + 4x - 6x - 24 = 0
<=> x( x + 4 ) - 6( x + 4 ) = 0
<=> ( x + 4 )( x - 6 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
c) ( 2x - 1 )2 + ( x + 3 )2 - 5( x + 2 )( x - 2 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5( x2 - 4 ) = 0
<=> 5x2 + 2x + 10 - 5x2 + 20 = 0
<=> 2x + 30 = 0
<=> 2x = -30
<=> x = -15
Bài 2.
D = x2 + 2xy + y2 - 6x - 6y - 5
= [ ( x2 + 2xy + y2 ) - 2x - 2y + 1 ] - 4x - 4y - 6
= [ ( x + y )2 - 2( x + y ) + 1 ] - 4( x + y ) - 6
= ( x + y - 1 )2 - 4( x + y ) - 6
Với x + y = -9
D = ( -9 - 1 )2 - 4.(-9) - 6
= 100 + 36 - 6
= 130
Bài 3.
4x2 + y2 - 4x + 10y + 26 = 0
<=> ( 4x2 - 4x + 1 ) + ( y2 + 10y + 25 ) = 0
<=> ( 2x - 1 )2 + ( y + 5 )2 = 0
<=> \(\hept{\begin{cases}2x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-5\end{cases}}\)
bài 2. tính giá trị biểu thức sau
16x^2-y^2 tại x=87 và y=13
bài 3 rút gọn các biểu thức sau
a) (x-y)^3+(y+x)^3+(y-x)^3-3xy.(x+y)
b) (5x-1)^2+2.(1-5x).(4+5x)+(5x+4)^2
bài 4 tìm x biết
a)9x^2+x=0
b)27x^3+x=0
Bài 2: Tính giá trị của biểu thức sau:
\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)
Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)
\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)
Bài 4: Tìm x
a) \(9x^2+x=0\)
\(\Rightarrow x\left(9x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)
b) \(27x^3+x=0\)
\(\Rightarrow x\left(27x^2+1=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)
Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)
Vậy \(x=0\)
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
a, \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)
c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)
Bài 2 :Tim x biết 1)16x^2 - 9(x + 1)^2 = 0 2) (5x - 4)^2 - 49x^2 = 0 3) 5x^3 - 20x = 0
1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)
\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)
\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3: Ta có: \(5x^3-20x=0\)
\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
tìm x biết:
1) x2 - 10x = -25
2) 5x (x-1) = x-1
3) 2 (x+5) - x2 - 5x = 0
4) x2 - 2x -3 = 0
5) 2x2 + 5x - 3 = 0
Câu 1 :
a, Ta có : \(x^2-10x=-25\)
=> \(x^2-10x+25=0\)
=> \(\left(x-5\right)^2=0\)
=> \(x-5=0\)
=> \(x=5\)
Vậy phương trình có nghiệm là x = 5 .
b, Ta có : \(5x\left(x-1\right)=x-1\)
=> \(5x\left(x-1\right)-x+1=0\)
=> \(5x\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(5x-1\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)
c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)
=> \(2\left(x+5\right)-x\left(x+5\right)=0\)
=> \(\left(2-x\right)\left(x+5\right)=0\)
=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 2, x = -5 .
d, Ta có : \(x^2-2x-3=0\)
=> \(x^2-3x+x-3=0\)
=> \(x\left(x+1\right)-3\left(x+1\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 3, x = -1 .
e, Ta có : \(2x^2+5x-3=0\)
=> \(2x^2+6x-x-3=0\)
=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)
=> \(\left(x+3\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)
\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
Vậy nghiệm của phương trình trên là \(5\)
\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)
\(3.2\left(x+5\right)-x^2-5x=0\\\Leftrightarrow 2x+10-x^2-5x=0\\ \Leftrightarrow-x^2-3x+10=0\\\Leftrightarrow x^2+3x-10=0\\\Leftrightarrow x^2-2x+5x-10=0\\\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\\\Leftrightarrow \left(x+5\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-5;2\right\}\)
\(4.x^2-2x-3=0\\\Leftrightarrow x^2+x-3x-3=0\\\Leftrightarrow \left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-1;3\right\}\)
\(5.2x^2+5x-3=0\\ \Leftrightarrow2\left(x^2+\frac{5}{2}x-\frac{3}{2}\right)=0\\ \Leftrightarrow x^2+\frac{5}{2}x-\frac{3}{2}=0\\ \Leftrightarrow x^2-\frac{1}{2}x+3x-\frac{3}{2}=0\\\Leftrightarrow x\left(x-\frac{1}{2}\right)+3\left(x-\frac{1}{2}\right)=0\\\Leftrightarrow \left(x+3\right)\left(x-\frac{1}{2}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x-\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-3;\frac{1}{2}\right\}\)
Tìm x biết:
a) (x-1)(x^2+x+1) - x(x+2)(x-2) = 5
b) (6x-2)^2 + (5x-2)^2 - 4(3x-1)(5x-2) = 0
c) (x+1)^3 - x(x-2)^2 + x - 1 = 0
a. \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\Leftrightarrow x^3-1-x^3+4x=5\Leftrightarrow4x-1=5\Leftrightarrow4x=6\Leftrightarrow x=\dfrac{3}{2}\)
b. \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\Leftrightarrow36x^2-24x+4+25x^2-20x+4-4\left(15x^2-6x-5x+2\right)=0\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+24x+20x-8=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)
c. \(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\Leftrightarrow x^3+3x^2+3x+1-x\left(x^2-4x+4\right)+x-1=0\Leftrightarrow x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0\Leftrightarrow7x^2=0\Leftrightarrow x=0\)