Cho P = 1/1.3+1/3.5+1/5.7+...+1/2021.2023.Tìm x biết : x.P=2022/2023
Tính
\(\dfrac{1}{1.3}\)+ \(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{2021.2023}\)
Ta có :
\(\dfrac{1}{1.3}\text{=}2\left(\dfrac{1}{1}-\dfrac{1}{3}\right)\)
\(\dfrac{1}{3.5}\text{=}2\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(\dfrac{1}{5.7}\text{=}2\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)
\(...\)
\(\dfrac{1}{2021.2023}\text{=}2\left(\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(\Rightarrow\) biểu thức chỉ còn :
\(2.1-\dfrac{2}{2023}\text{=}\dfrac{4044}{2023}\)
đặt biểu thức trên là A
ta có
2A=2/1.3+2/3.5+...+2/2021.2023
2A=1/1-1/3+1/3-1/5+...+1/2021-1/2023
2A=1/1-1/2023
2A=2022/2023
A=(2022/2023):2
A=1011/2023
Thực hiện phép tính ( tính hợp lý nếu có thể)
\(1-\dfrac{2}{1.3}-\dfrac{2}{3.5}-..\dots-\dfrac{2}{2021.2023}\)
Tính nhanh:
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(A=1.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{5}+...+\dfrac{1}{2021}.\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
bài 4 : tính
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + ...+ \(\dfrac{1}{2021.2023}\)
mọi người giải giúp em bài này nha
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{2021.2023}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}.\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
Ta có A = \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2021\cdot2023}\)
= \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}+\dfrac{1}{2023}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
c, C = 2020/1.2 + 2020/2.3 + 2020/3.4 + ... + 2020/2019.2020
d, D = 2020/1.3 + 2020/3.5 + 2020/5.7 + ... + 2020/2019.2021
e, E = 2023/ 1.3 + 2023/3.5 + 2023/5.7 + ... + 2023/2019.2020
f, F = 1/15 + 1/35 + 1/63 + ... + 1/657
giúp với mình cần gấp lắm
a)Tìm n thuộc Z để biểu thức sau có giá trị là số nguyên:A=2n-4/2n+1
b)Tính:A=1/1.3+1/3.5+1/5.7+...+1/2021.2023
b) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
\(b)\)\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(2A=\dfrac{1}{1}-\dfrac{1}{2023}\)
\(2A=\dfrac{2022}{2023}\)
\(A=\dfrac{2022}{2023}:2\)
\(A=\dfrac{1011}{2023}\)
Tìm x biết:'
1/1.3+1/3.5+1/5.7+.........+1/2003.2005=1/x
\(\dfrac{7}{1.3}\) + \(\dfrac{7}{3.5}\) + \(\dfrac{7}{5.7}\) + ... + \(\dfrac{7}{2021.2023}\)
Đặt tông trên là A
\(\dfrac{2A}{7}=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
\(\Rightarrow A=\dfrac{7.2022}{2.2023}=\dfrac{1011}{289}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{2021.2023}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\)
\(=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2023-2021}{2021.2023}\)
\(=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{2023}{2021.2023}-\dfrac{2021}{2021.2023}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}...+\dfrac{2}{2021.2023}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)
\(=1-\dfrac{1}{2023}\)
\(=\dfrac{2023}{2023}-\dfrac{1}{2023}\)
\(=\dfrac{2022}{2023}\)
Tìm x biết 1/1.3+1/3.5+1/5.7+...+1/x.(x+2)=1005/2011
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009