\(A=1.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{5}+...+\dfrac{1}{2021}.\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
`A=1/[1.3]+1/[3.5]+1/[5.7]+....+1/[2021.2023]`
`A=1/2.(2/[1.3]+2/[3.5]+2/[5.7]+....+2/[2021.2023])`
`A=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/2021-1/2023)`
`A=1/2.(1-1/2023)`
`A=1/2 . 2022/2023`
`A=1011/2023`