Tìm nghiệm của đa thức:
-4x\(^3\)-2x+6
Tìm nghiệm của đa thức:
-4x\(^3\)+2x+6
\(-4x^3+2x+6=0\)
\(-4x^3+2x+2+4=0\)
\(-4x^3+4x+4=0\)
\(-4x^3+8x=0\)
\(x\left(-4x^2+8\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\-4x^2=-8\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=0\\x=\pm\sqrt{2}\end{matrix}\right.\)
Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
cho đa thức A=9-x^3+4x-2x^3+4x^2-6 và B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4
1)thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
2)tìm nghiệm của đa thức A-B
mong mn trả lời giúp ạ
1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)
\(B\left(x\right)=-3x^3+4x^2-x+7\)
2: \(A-B=0\)
=>4x+3-x+7=0
=>3x+10=0
hay x=-10/3
1)
\(A=9-x^3+4x-2x^3+4x^2-6\)
\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)
\(A=3-3x^3+4x+4x^2\)
\(A=-3x^3+4x^2+4x+3\)
\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)
\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)
\(B=7-3x^3+4x^2-x\)
\(B=-3x^3+4x^2-x+7\)
2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)
\(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)
\(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)
\(A-B\) \(=5x-4\)
Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)
Cho \(H\left(x\right)=0\)
hay \(5x-4=0\)
\(5x\) \(=0+4\)
\(5x\) \(=4\)
\(x\) \(=4:5\)
\(x\) \(=\) \(0,8\)
Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))
MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG
tìm nghiệm của đa thức 2x^4-4x^3
\(\Leftrightarrow2x^3\left(x-2\right)=0\)
=>x=0 hoặc x=2
=> 2x^4 - 4x^3 = 0
<=> 2x^3 ( x - 2 ) = 0
<=> 2x^3= 0 hoặc x-2=0
<=> x=0 hoặc x=2
Vậy nghiệm của đa thức 2x^4-4x^3 là x=0 hoặc x=2
( Dấu hoặc là dấu vuông 2 cái á . Tại đt mình k biết viết í )
Chúc b học tốt:3
Cho đa thức :f(x)=x^4-2x^2+4x+8x^3 và G(x) =6+8x^3-3x^2+4x
a, Tính F(-1)
b,Tính H(x) = F(x) - G(x)
c, Đa thức H(x) có nhiều nhất bao nhiêu nghiệm . Tìm nghiệm của đa thức H(x)
a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3
=1-2+(-4)+(-8)
=-9
b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)
=x4-2x2+4x+8x3-6-8x3+3x2+4x
=x4+x2+8x-6
t là nốt câu c):
Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.
Làm lại câu b) của bạn kia tí nhé:
b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)
c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.
\(H\left(x\right)=x^4+3x^2-2x^2-6\)
\(=\left(x^2-2\right)\left(x^2+3\right)=0\)
Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
cho hai đa thức M(x)=1/2x^3-3x-x^2+3;N(x)=-4x+x^2+1/2x^3+6
a)sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến.
b)tìm nghiệm của đa thức A(x)=M(x)-N(x)
tìm nghiệm của các đa thức sau:
a)3x-6;
b)2x-10;
c)x^2-1;
d)(x-2)*(x+3);
e)x^2-2x;
f)(x^2)+2;
g)x^3-4x;
h)3-2x
a)Đặt A (x) = 0
hay \(3x-6=0\)
\(3x\) \(=6\)
\(x\) \(=6:3\)
\(x\) \(=2\)
Vậy \(x=2\) là nghiệm của A (x)
b) Đặt B (x) = 0
hay \(2x-10=0\)
\(2x\) \(=10\)
\(x\) \(=10:2\)
\(x\) \(=5\)
Vậy \(x=5\) là nghiệm của B (x)
c) Đặt C (x) = 0
hay \(x^2-1=0\)
\(x^2\) \(=1\)
\(x^2\) \(=1:1\)
\(x^2\) \(=1\)
\(x\) \(=\overset{+}{-}1\)
Vậy \(x=1;x=-1\) là nghiệm của C (x)
d) Đặt D (x) = 0
hay \(\left(x-2\right).\left(x+3\right)=0\)
⇒ \(x-2=0\) hoặc \(x+3=0\)
* \(x-2=0\) * \(x+3=0\)
\(x\) \(=0+2\) \(x\) \(=0-3\)
\(x\) \(=2\) \(x\) \(=-3\)
Vậy \(x=2\) hoặc \(x=-3\) là nghiệm của D (x)
e) Đặt E (x) = 0
hay \(x^2-2x=0\)
⇔\(\left[{}\begin{matrix}x^2-2x\\\left(x-2\right)x\end{matrix}\right.\)
⇒\(\left(x-2\right)x\)
⇔ \(x.\left(2x-1\right)=0\)
⇔ \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của E (x)
f) Đặt F (x) = 0
hay \(\left(x^2\right)+2=0\)
\(x^2\) \(=0-2\)
\(x^2\) \(=-2\)
\(x\) \(=\overset{-}{+}-2\)
Do \(\overset{+}{-}-2\) không bằng 0 nên F (x) không có nghiệm
Vậy đa thức F (x) không có nghiệm
g) Đặt G (x) = 0
hay \(x^3-4x=0\)
⇔\(\left[{}\begin{matrix}x^3-4x\\\left(x-4\right)x^2\end{matrix}\right.\)
⇒ \(\left(x-4\right)x^2=0\)
⇔ \(x.\left(4x-1\right)=0\)
⇔\(\left[{}\begin{matrix}x=0\\4x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=\dfrac{1}{4}\) là nghiệm của G (x)
h) Đặt H (x) = 0
hay \(3-2x=0\)
\(2x\) \(=3+0\)
\(2x\) \(=3\)
\(x\) \(=3:2\)
\(x\) \(=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\) là nghiệm của H (x)
CÂU G) MIK KHÔNG BIẾT CÓ 2 NGHIỆM HAY LÀ 3 NGHIỆM NỮA
a, x=2
b, x=5
c, x=1
d, x=2 hoặc x=-3
e, x=2
f, không có số x nào thỏa mãn
g, x=2
h, x= 1,5
Tìm nghiệm của đa thức : 2x3+4x2-2x
\(f\left(x\right)=2x^3+4x^2-2x=0\)
\(\Rightarrow2x\left(x^2+2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\left(x+1\right)^2=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{2}-1\end{cases}}\)
P/S:không chắc chắn đâu nha.đặc biệt là cái nghiệm thứ 2 ý.
zZz Cool Kid zZz:Thiếu nghiệm rồi bạn ey!Mình giải lại chỗ pt thứ 2 thôi nhé!
\(x^2+2x-1=0\Leftrightarrow x^2+2x+1=2\)
\(\Leftrightarrow\left(x+1\right)^2=2\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{2}\\x+1=-\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)
Hoặc nếu đã học hằng đẳng thức:
\(x^2+2x-1=0\Leftrightarrow\left(x^2+2x+1\right)-2=0\)
\(\Leftrightarrow\left(x+1\right)^2-\sqrt{2}^2=0\Leftrightarrow\left(x+1-\sqrt{2}\right)\left(x+1+\sqrt{2}\right)=0\)
Từ đây suy ra nghiệm (theo mình là thế)
số nghiệm của đa thức: x^4+2x^3-4x^2-5x-6
Tìm nghiệm của đa thức sau :
2x-6
3x+12
4x+16
Cho 2x-6=0
Nên:2x=6
x=6:2
x=3
Hai câu còn lại làm tương tự