Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2019 lúc 5:56
Nguyễn Văn Trí
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 14:50

f'(x)=y'=-3x^2+2x

f'(2)=-3*2^2+2*2=-3*4+4=-8

f(2)=-2^3+2^2-1=-8-1+4=-9+4=-5

y=f(2)+f'(2)(x-2)

=-5+(-8)(x-2)

=-8x+16-5

=-8x+11

Phú Phạm Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 11 2017 lúc 14:36

Bùi Văn Nguyên
Xem chi tiết
annamza68
23 tháng 4 2020 lúc 11:22

hello các bạn

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 14:06

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2017 lúc 3:22

Chọn D

Thầy Cao Đô
Xem chi tiết
Hoang Hai Nam
27 tháng 4 2022 lúc 10:53

1

Phạm Thanh Thu
30 tháng 4 2022 lúc 22:04

Ta có y′=3x2−6x+1y′=3x2−6x+1.

Gọi M(x0;y0)M(x0;y0) là tiếp điểm.

Ta có x0=1x0=1 do đó y0=13−3.12+1−1=−2y0=13−3.12+1−1=−2 ;

y′(1)=3.12−6.1+1=−2y′(1)=3.12−6.1+1=−2.

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 11 là y=y′(1)(x−1)+(−2)⇒y=−2x

Đỗ Ngọc	Hùng
21 tháng 4 2023 lúc 8:23

loading...  

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2021 lúc 19:09

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được