Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lầy Lam
Xem chi tiết

Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip

Nguyễn Quốc Duy
8 tháng 11 2023 lúc 10:52

#@₫!%&@^@₫@₫=_++_×%@%@&@@@@=@

truonghoanghieumy
Xem chi tiết
Phạm Duy Lộc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 21:40

Bài 1:

a: \(S=1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(5S=5-5^2+5^3-5^4+...+5^{99}-5^{100}\)

=>\(6S=5-5^2+5^3-5^4+...+5^{99}-5^{100}+1-5+5^2-5^3+...+5^{98}-5^{99}\)

=>\(6S=-5^{100}+1\)

=>\(S=\dfrac{-5^{100}+1}{6}\)

b: S=1-5+52-53+...+598-599 là số nguyên

=>\(\dfrac{-5^{100}+1}{6}\in Z\)

=>\(-5^{100}+1⋮6\)

=>\(5^{100}-1⋮6\)

=>\(5^{100}\) chia 6 dư 1

Nguyễn Minh Dương
Xem chi tiết
boi đz
29 tháng 6 2023 lúc 17:14

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

Nguyễn Minh Dương
29 tháng 6 2023 lúc 16:45

e đang cần gấp, có ai đến giúp e ko?

\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)

An Bùi
Xem chi tiết
Akai Haruma
11 tháng 9 2021 lúc 8:50

Lời giải:

$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$

$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$

$25C-C=(5^3+5^{102})-(5+1)$

$24C=5^{102}-119$

$C=\frac{5^{102}-119}{24}$

Nguyễn Trần Minh Hoàng
27 tháng 7 2023 lúc 16:11

    

 

Nguyễn Trần Phương Uyên
Xem chi tiết

  A= 1 + 5 + 52 + 5 + ... + 5800 

5A=       5 + 5 + 53 + .... +5 800 + 5801  

5A - A = 5801  - 1 

4a = 5801 - 1 

    5801 - 1 +1 = 5n

⇒  5801 = 5n ⇒ n = 801

Ascalon Sword
Xem chi tiết
Nguyễn Sỹ Dũng
8 tháng 1 2018 lúc 20:06

Đây:Tài khoản Nguyenvanngoc

Mật khẩu tuxbox

Hương Giang Nguyễn
Xem chi tiết
HT.Phong (9A5)
3 tháng 9 2023 lúc 8:56

Ta có:

\(C=5+5^2+5^3+...+5^{2016}\)

\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)

\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)

Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên

\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5

Nên C là hợp số

Nguyễn Nhân Dương
3 tháng 9 2023 lúc 8:56

1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu

\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5

Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho

\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số

Vậy C là hợp số

boi đz
3 tháng 9 2023 lúc 8:57

\(C=5+5^2+5^3+.....+5^{2016}\\ C=5\left(1+5+5^2+....+5^{2015}\right)\\ =>C⋮1;C⋮5;C⋮5\left(1+5+5^2+....+5^{2015}\right)\)

=> C  là hợp số

 

 

Trần Phương Uyên
Xem chi tiết

Bài 1:

   D     =      5  + 52 + 53+...+ 5100

5.D     =             52 + 53+...+5 100 + 5101

5D - D = 5101 - 5

4D       = 5101 - 5

  D      = \(\dfrac{5^{101}-5}{4}\)

Bài 2:

So sánh 

a, 544 = (2.33)4 = 24.312  

    2112 = (3.7)12 = 312.712

Vì 24 < 712 nên 544 < 2112

b, 339 và 1121

    339   =   (313)3

   1121 = (117)3

     313 = (32)6.3 = 96.3 < 97 < 117 

Vậy 339  < 1121

    

 

Trần Phương Uyên
Xem chi tiết
Nguyễn Đức Trí
26 tháng 8 2023 lúc 22:14

1) \(D=5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)

\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)

\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)

\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)

2)

a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)

b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)

\(\Rightarrow3^{39}< 11^{21}\)

c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)

\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)

\(201^{60}>398^{45}\)