Tìm số nguyên tố p để phương trình sau có hai nghiệm nguyên: x2 - px - 228p = 0
Lời giải:
Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:
\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)
Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).
Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)
\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)
Mà \(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)
Thử lại thu được $p=19$ thỏa mãn.
Cho p, q là số nguyên tố và phương trình x2 - px + q = 0 có nghiệm nguyên dương
Tìm p,q
Để pt đã cho có nghiệm nguyên dương thì \(\Delta =p^2-4q\) là số chính phương.
Đặt \(p^2-4q=k^2\Leftrightarrow4q=\left(p-k\right)\left(p+k\right)\) với k là số tự nhiên.
Do p - k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p - k < p + k và q là số nguyên tố nên p - k = 2; p + k = 2q hoặc p - k = 4; p + k = q.
Nếu p - k = 4; p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p - k).
Nếu p - k = 2; p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy pt \(x^2-3x+2=0\) có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
Tìm số nguyên tố p, biết rằng phương trình \(x^2+px-12p=0\)có hai nghiệm đều là số nguyên.
cho a là số nguyên dương, p là số nguyên tố. Tìm các giá trị của a để phương trình ax^2-px-p=0 có nghiệm hữu tỉ.
Xét \(\Delta=p^2+4ap\inℕ^∗,\forall a,p\inℕ^∗\)
Để phương trình nhận nghiệm hữu tỉ thì \(\sqrt{\Delta}\)Phải là hữu tỉ hay có thể khẳng định rằng \(\Delta\)phải là số chính phương.
Ở đây ta chú ý rằng nếu x là số nguyên tố thì mọi số chính phương chia hết cho x buộc phải chia hết cho x2
( Điều này hiển nhiên khỏi chứng minh)
Vì \(\Delta⋮p\)mà p là số nguyên tố \(\Rightarrow\Delta=p^2+4ap⋮p^2\Rightarrow4a⋮p\)
---> Đặt \(4a=kp,k\inℕ^∗\)---> Thế vào \(\Delta\)
\(\Rightarrow\Delta=p^2+kp^2=p^2\left(1+k\right)\)là số chính phương khi và chỉ khi (1+k) là số chính phương
---> Đặt \(1+k=n^2\Rightarrow k=n^2-1,n\inℕ^∗\)---> Thế vào a
\(\Rightarrow a=\frac{\left(n^2-1\right)p}{4}\)
Thử lại: \(\Delta=p^2+4ap=p^2+\left(n^2-1\right)p^2=p^2.n^2=\left(pn\right)^2\)---> Là số chính phương
Kết luận: bla bla bla bla...... :)))
Bài 40: Cho phương trình x2 – 20x + m + 5 = 0 (*) với m là tham số
a) Giải phương trình (*) với m = 14
b) Tìm m để phương trình (*) có hai nghiệm phân biệt x1, x2 là các số nguyên tố
a, Thay m=14 vào pt* có
\(x^2-20x+14+5=0\)
⇔\(x^2-20x+19=0\)
⇔(x-1)(x-19)=0
⇔\(\left[{}\begin{matrix}x-1=0\\x-19=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=1\\x=19\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=19\end{matrix}\right.\)khi và chỉ khi m=14
Cho phương trình x2 - ( m - 3 ) x - 5 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là các số nguyên.
\(\Delta=\left(-m+3\right)^2-4\cdot\left(-5\right)=m^2-6m+9+20=m^2-6m+29=\left(m-3\right)^2+20>0\)
=>Phương trình có hai nghiệm phân biệt
\(\Leftrightarrow m-3\in Z\Leftrightarrow m\in Z\)
Cho phương trình x 2 + px – 5 = 0 có hai nghiệm x 1 và x 2 . Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau: - x 1 và - x 2
Phương trình x 2 +px -5=0 có hai nghiệm x 1 và x 2 nên theo hệ thức vi-ét ta có:
x 1 + x 2 = -p/1 = -p ; x 1 x 2 =-5/1 =-5 (1)
Hai số – x 1 và – x 2 là nghiệm của phương trình:
[x – (- x 1 )] [x – (- x 2 )] =0
⇔ x 2 – (- x 1 x) – (- x 2 x) + (- x 1 )(- x 2 ) =0
⇔ x 2 + x 1 x + x 2 x + x 1 x 2 =0
⇔ x 2 + ( x 1 + x 2 )x + x 1 x 2 =0 (2)
Từ (1) và (2) ta có phuơng trình cần tìm là x 2 – px -5 =0
Cho phương trình x 2 + px – 5 = 0 có hai nghiệm x 1 và x 2 . Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau: 1 x 1 và 1 x 2
Cho phương trình log 3 2 x − log 3 x + m − 3 = 0 . Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt x 1 < x 2 thỏa mãn x 2 – 81 x 1 < 0
A. 4
B. 5
C. 3
D. 6