Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hạnh Nguyên
Xem chi tiết
Đỗ Ngọc Hải
31 tháng 5 2018 lúc 15:34

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

Huy Hoàng
31 tháng 5 2018 lúc 22:31

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

lê thị thu hiền
16 tháng 7 2018 lúc 14:42

gggggggggggggggggggggggggggggg

Trần Vân Anh
Xem chi tiết
Việt Anh
Xem chi tiết
Lại Mạnh
11 tháng 4 2020 lúc 13:14

không biết

Khách vãng lai đã xóa
Anh Tài Lê
Xem chi tiết
IS
17 tháng 4 2020 lúc 21:02

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

Khách vãng lai đã xóa
Hương
Xem chi tiết
Rhider
18 tháng 11 2021 lúc 16:27

Bạn tham khảo 

a. Vì M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình của Δ ABC
=> MN // BC
=> MNCB là hình thang
b. Xét Δ AMN và Δ CEN có:
MN = EN (gt)
góc ANM = góc CNE (đối đỉnh)
AN = CN (gt)
=> Δ AMN = Δ CEN (c.g.c.)
=> góc MAN = góc ECN
Mặt khác 2 góc này ở vị trí so le trong
=> AB // EC
=> MB // EC (1)
Mặt khác MN // BC (theo câu a) => ME // BC (2)
Từ (1) và (2) => MECB là hình bình hành

Hương
Xem chi tiết
Thuy Bui
19 tháng 11 2021 lúc 17:25

a. Vì M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình của Δ ABC
=> MN // BC
=> MNCB là hình thang
b. Xét Δ AMN và Δ CEN có:
MN = EN (gt)
góc ANM = góc CNE (đối đỉnh)
AN = CN (gt)
=> Δ AMN = Δ CEN (c.g.c.)
=> góc MAN = góc ECN
Mặt khác 2 góc này ở vị trí so le trong
=> AB // EC
=> MB // EC (1)
Mặt khác MN // BC (theo câu a) => ME // BC (2)
Từ (1) và (2) => MECB là hình bình hành

Đào Phương Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 13:52

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

Quynh Tram
Xem chi tiết

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>\(\widehat{DCB}=\widehat{EBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

Quynh Tram
7 tháng 1 lúc 21:57

loading...

Hoa Thiên Cốt
Xem chi tiết