Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tón.
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 6 2023 lúc 12:05

a: (SAB) vuông góc (ABCD)

(SAB) giao (ABCD)=AB

SI vuông góc AB

=>SI vuông góc (ABCD)

b: CD vuông góc SI

CD vuông góc IK

=>CD vuông góc (SIK)

=>(SCD) vuông góc (SIK)

 

 

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:47

loading...

a, Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)

\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)

\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)

Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)

\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2017 lúc 12:26

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 0:28

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

Nguyễn Kim Chi
Xem chi tiết
Nguyễn Kim Chi
22 tháng 3 2022 lúc 0:54

Trong mp(SAD) kẻ DF//SA

SA⊥AD => DF⊥AD mà AD⊥DC => AD⊥(DCF)

Kẻ CH⊥DF => CH⊥AD => CH⊥(SAD)

=> H là hình chiếu của C lên (SAD)

=> \(\widehat{\left(SC,\left(SAD\right)\right)}=\widehat{\left(SC,SH\right)}=\widehat{CSH}\)

ΔCFD=ΔSAB => ΔCFD đều cạnh a => CH= \(\dfrac{\sqrt{3}}{2}a\)

SC= \(\sqrt{2}a\)

Xét tam giác SCH vuông ở H ta có:

sin CSH= \(\dfrac{HC}{SC}\)=\(\dfrac{\sqrt{6}}{4}\)

=>  \(\widehat{CSH}\)= arcsin\(\dfrac{\sqrt{6}}{4}\)

 

 

Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 3 2022 lúc 19:44

Đề bài thiếu chi tiết định dạng điểm S nên không giải được (ví dụ phải thêm SA vuông góc mặt đáy hoặc gì đó tương tự)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2018 lúc 10:52

Đáp án B

Dễ thấy: S C H ^ = 45 ∘  Gọi H là trung điểm của AB ta có  S H ⊥ A B ⇒ S H ⊥ A B C D .

Ta có: S H = H C = a 17 2 .  

Ta có:  d = d M , S A C = 1 2 d D , S A C

Mà 1 2 d D , S A C = 1 2 d B , S A C  nên  d = d H , S A C

Kẻ H I ⊥ A C , H K ⊥ S I ⇒ d H , S A C = H K  

Ta có: H I = A B . A D 2 A C = a 5 5  

Từ đó suy ra: d = H K = S H . H I S I = a 1513 89 .  

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2019 lúc 17:58

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2017 lúc 3:32
Yeon Park
Xem chi tiết
Ami Mizuno
13 tháng 3 2022 lúc 16:11

undefinedundefinedundefined