cho ▲ ABC có hai đường trung tuyến BD,CE bằng nhau và cắt nhau tại G.Chứng minh rằng
1)GD=GE
2)△ GBE = △ GCD
3)△ ABC cân
cho ▲ ABC có hai đường trung tuyến BD,CE bằng nhau và cắt nhau tại G.Chứng minh rằng
1)GD=GE
2)△ GBE = △ GCD
3)△ ABC cân
Cho tam giác ABC có 2 đường trung tuyến BD,CE bằng nhau và cắt nhau tại G a,c/m GD=GE b,tam giác GBE=tam giác GCD c,tam giác ABC cân
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G.
a) Chứng minh ∆ADB và ∆AEC.
b) Chứng minh ∆GBC là tam giác cân.
c) Chứng minh GD+GE>1/2BC
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
=>ΔADB=ΔAEC
b: Xet ΔEBC và ΔDCB có
EB=DC
góc EBC=góc DCB
BC chung
=>ΔEBC=ΔDCB
=>góc GBC=góc GCB
=>ΔGBC cân tại G
Câu 1 : Tìm nghiệm của các đa thức sau :
a)2x^2-6x
b)2x^2-4x
c)2x^2-8x
Câu 2: Cho tâm giác ABC có hai đường trung tuyến BD , CE bằng nhau và cắt nhau tại G . CMR:
1) GD=GE
2) tam giác GBE = tam giác GCD
3) Tam giác ABC cân
4) BD > DE
Câu 1:
a) \(2x^2-6x\)
\(Cho:2x^2-6x=0\Leftrightarrow x\left(2x-6\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-6=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy nghiệm của đa thức: \(2x^2-6x\) là: \(\hept{\begin{cases}x=0\\x=3\end{cases}}\)
b)\(2x^2-4x\)
\(Cho:2x^2-4x=0\Leftrightarrow x\left(2x-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}}\)
Vây đa thức \(2x^2-4x\) có nghiệm là: \(\hept{\begin{cases}x=0\\x=2\end{cases}}\)
c)\(2x^2-8x\)
\(Cho:2x^2-8x=0\Leftrightarrow x\left(2x-8\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy đa thức \(2x^2-8x\) có nghiêmk là: \(\hept{\begin{cases}x=0\\x=4\end{cases}}\)
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC
Cho tam giác ABC vuông tại A có 2 đường trung tuyến BD và CE cắt nhau tại . B+BD=CE. Chứng minh tam giác ABC cân tại A
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G . Biết BD = CE
a) Chứng minh tam giác GBC là tam giác cân
b) Chứng minh DG + EG > 1/2 BC
Câu này làm thế nào vậy mn
giúp mình với
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Cho tam giác ABC cân tại Á và hai đường trung tuyến BD và CE cắt nhau tại G a) Chứng minh : BE = DC và tâm giác BEC bằng tâm giác CDB
A) Vì ΔABC cân tại A nên AB = AC
Ta có: AB = EB + AE mà AE = EB (gt)
AC = AD + DC mà AD = DC (gt)
==> BE = DC
Xét ΔBEC và ΔCDB ta có
BE = DC (cmt)
BC chung
∠ABC = ∠ACB (gt)
==> ΔBEC = ΔCDB (c-g-c)
Cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. chứng minh rằng tam giác ABD bằng tam giác ACE, tam giác GBD là tam giác cân và 4GD bé hơn BC
Xét ΔABD và ΔACE có
AB=AC
góc BAD chung
AD=AE
=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G
Xét ΔEBC và ΔDCB có
EB=DC
góc EBC=góc DCB
BC chung
=>ΔEBC=ΔDCB
=>góc GBC=góc GCB
=>ΔGBC cân tại G