Tìm giá trị nhỏ nhất và giá trị lớn nhất của:
A = \(\dfrac{27-12x}{x^2+9}\)
Tìm giá trị lớn nhất và nhỏ nhất của: \(C=\dfrac{27-12x}{x^2+9}\)
\(C=\dfrac{4\left(x^2+9\right)-4x^2-12x-9}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)
\(C_{max}=9\) khi \(x=-\dfrac{3}{2}\)
\(C=\dfrac{-x^2-9+x^2-12x+36}{x^2+9}=-1+\dfrac{\left(x-6\right)^2}{x^2+9}\ge-1\)
\(C_{min}=-1\) khi \(x=6\)
Ta có \(4-C=\dfrac{4x^2+12x+9}{x^2+3}=\dfrac{\left(2x+3\right)^2}{x^2+3}\ge0\Rightarrow C\le4\).
Đẳng thức xảy ra khi và chỉ khi \(x=-\dfrac{3}{2}\).
\(C+1=\dfrac{x^2-12x+36}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}\ge0\Rightarrow C\ge-1\).
Đẳng thức xảy ra khi và chỉ khi x = 6.
1) Tìm giá trị nhỏ nhất của:
A= 2 . ( x - 3 )4 - 11
2) Tìm giá trị lớn nhất của :
B= -3 - |5-x|
(|: giá trị tuyệt đối)
1) `(x-3)^4 >=0`
`2.(x-3)^4>=0`
`2.(x-3)^4-11 >=-11`
`=> A_(min)=-11 <=> x-3=0<=>x=3`
2) `|5-x|>=0`
`-|5-x|<=0`
`-3-|5-x|<=-3`
`=> B_(max)=-3 <=>x=5`.
Bài 1:
Ta có: \(\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)
\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3
Bài 2:
Ta có: \(\left|5-x\right|\ge0\forall x\)
\(\Leftrightarrow-\left|5-x\right|\le0\forall x\)
\(\Leftrightarrow-\left|5-x\right|-3\le-3\forall x\)
Dấu '=' xảy ra khi x=5
tìm giá trị nhỏ nhất của A=\(\dfrac{27-12x}{^{ }x^2+9}\)
giải hộ vs mn ui
HELLO MN NHÓ LÂU ÙI KO VÔ
\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2+9+27-12x}{x^2+9}-1=\dfrac{x^2-12x+36}{x^2+9}-1=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)
Dấu = xảy ra khi x = 6
Vậy:...
A= \(\dfrac{27-12x}{x^2-9}\)
= \(\dfrac{x^2-12x+36-x^2-9}{x^2-9}\)
= \(\dfrac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)
= \(\dfrac{\left(x-6\right)^2}{x^2+9}-1\)
Ta có \(\dfrac{\left(x-6\right)^2}{x^2+9}\) ≥ 0 ∀ x
⇒ \(\dfrac{\left(x-6\right)^2}{x^2+9}-1\) ≥ -1 ∀ x
Vậy AMin= -1 tại x=6
Tìm giá trị nhỏ nhất của:
A= | x - 2 | + \(\dfrac{4}{7}\)
\(A=\left|x-2\right|+\dfrac{4}{7}\ge\dfrac{4}{7}\)
dấu"=" xảy ra \(< =>x=2\)
Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\Leftrightarrow\left|x-2\right|+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\)
Dấu '=' xảy ra khi x-2=0
hay x=2
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(P=\dfrac{12x^2+12x+18}{x^2-2x+3}\)
Tìm giá trị nhỏ nhất của:A=/2.5-x/+5,8
Tìm giá trị lớn nhất của:B=2-/x+2/3/ (là 2 phần 3 nha mấy bạn)
ta có: /2,5-x/\(\ge\)0, nên A= /2,5-x/ + 5,8 \(\ge\)5,8
vậy giá trị nn của A là 5,8, A=5,8 khi /2,5-x/=0
<=> x=2,5
ta có: /x+2/3/ \(\ge\)0 nên B= 2 - /x+2/3/ \(\le\)2
vậy gtln của B là 2, B=2 khi /x+2/3/=0 <=> x= -2/3
Bài 1: Tìm giá trị nhỏ nhất của:
a) A= x2 + 2x + 4
b) B= x2 - 20x + 101
c) C= x2 - 2x + y2 + 4y + 8
Bài 2: Tìm giá trị lớn nhất của:
A = 5 - 8x - x2
B = x - x2
C = 4x - x2 + 3
D = -x2 + 6x - 11
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
tìm \(x\in Z\) để các biểu thức sau có giá trị lớn nhất và có giá trị nhỏ nhất :
1)A = \(\dfrac{1}{7-x}\) 2) B = \(\dfrac{8-x}{x-3}\)
3) C = \(\dfrac{27-2x}{12-x}\)
1) Xét rằng x > 7 <=> A < 0
Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến
A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1
Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6
* Với giá trị nào của x thì các căn sau có nghĩa:
a.\(\sqrt{8x+2}\)
b.\(\sqrt{\dfrac{-5}{6-3x}}\)
* Tìm giá trị nhỏ nhất của:
A=\(x-2\sqrt{x-2}+3\)
$a)ĐK:8x+2\ge 0$
$\to 8x \ge -2$
$\to x \ge -\dfrac14$
$b)ĐK:\dfrac{-5}{6-3x} \ge 0(x \ne 2)$
Mà $-5<0$
$\to 6-3x<0$
$\to 6<3x$
$\to x>2$
$*A=x-2\sqrt{x-2}+3(x \ge 2)$
$=x-2-2\sqrt{x-2}+1+4$
$=(\sqrt{x-2}-1)^2+4 \ge 4$
Dấu "=" xảy ra khi $\sqrt{x-2}-1=0 \Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$
a) \(x\ge-\dfrac{1}{4}\)
b) x<2