2x + 2 = 20
Phân tích đa thức sau thành nhân tử:
tìm x
a, ( x - 3 ) mũ 3 + x (1 - x ) = 3
b, 4x ( x - 20 ) - ( 2x - 1 )( 2x + 3 )= 0
c, ( 2x - 1 ) mũ 2 + ( 3 + 2x )(3 - 2x )= 8
d, ( x - 20 )( x mũ 2 + 2x + 4 ) - x mũ 2 ( x + 1 ) = - 17
2x2 (4x3 + 2x) + (x2 - 2) (-2x)3 = 20
8x5+4x3+(x2-2).(-8x3)=20
8x5+4x3-8x5+16x3=20
20x3 =20
x3 =1
x =1
vậy x=1
Tìm x: ( 2x - 1 )2 - ( 2x + 5 )( 2x - 5 ) = 20
( 2x - 1 )2 - ( 2x + 5 )( 2x - 5 ) = 20
\(=4x^2+1-4x-\left(4x^2-25\right)=20\)
\(=4x^2+1-4x-4x^2+25=20\)
\(=26-4x=20\)
\(4x=26-20=6\)
\(x=\frac{6}{4}=1,5\)
tìm x, biết:
a) (2x-1) mũ 20= (2x-1)mũ 18
b) ( 2x-3) mũ 2= 9
c) (x-5) mũ 2 = (1-3x)mũ 2
bài 2: Chứng minh rằng:
a) 15 mũ 20 - 15 mũ 19 chia hết cho 14
b) 3 mũ 20 + 3 mũ 21+ 3 mũ 22 chia hết cho 13
c) 3+ 3 mũ 2 + 3 mũ 3+.......+ 3 mũ 2007 chia hết cho 13
7 mũ 1+ 7 mũ 2+ 7 mũ 3+.........+ 7 mũ 4n chia hết cho 400
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
(1/20 - 1/5 ) 2x +1 + 2x+2 = -148/5
\(\left(\dfrac{1}{20}-\dfrac{1}{5}\right)\cdot2^{x+1}+2^{x+2}=\dfrac{-148}{5}\)
\(\Rightarrow-\dfrac{3}{20}\cdot2^{x+1}+2^{x+1}\cdot2=-\dfrac{148}{5}\)
\(\Rightarrow2^{x+1}\cdot\left(-\dfrac{3}{20}+2\right)=\dfrac{-148}{5}\)
\(\Rightarrow2^{x+1}\cdot\dfrac{37}{20}=\dfrac{-148}{5}\)
\(\Rightarrow2^{x+1}=\dfrac{-148}{5}:\dfrac{37}{20}\)
\(\Rightarrow2^{x+1}=-16\)
Xem lại bài
\(\left(\dfrac{1}{20}-\dfrac{1}{5}\right)\cdot2^{x+1}+2^{x+2}=-\dfrac{148}{5}\)
\(\Leftrightarrow-\dfrac{3}{20}\cdot2^{x+1}+2^{x+1}\cdot2=\dfrac{-148}{5}\)
\(\Leftrightarrow2^{x+1}\left(-\dfrac{3}{20}+2\right)=\dfrac{-148}{5}\)
\(\Leftrightarrow2^{x+1}\cdot\dfrac{37}{20}=\dfrac{-148}{5}\)
\(\Leftrightarrow2^{x+1}=\dfrac{-148}{5}:\dfrac{37}{20}\)
\(\Leftrightarrow2^{x+1}=-16\)
\(\Leftrightarrow2^{x+1}=-2^4\)(vô lí)
Xem lại đề bài!
tìm x
[(22x+10).2+20]-18=20
Ta có : [( 22x +10 ) . 2 + 20 ] -18 = 20
( 22x +10 ) . 2 + 20 = 20 + 18 = 38
( 22x +10 ) . 2 = 38 -20 = 18
22x +10 = 18 :2 = 9
Vì 10 > 9 nên x = rỗng.
Bài 2
C= | 2x - 20 | - | 2x + 3 |
Áp dụng tính chất dễ thôi bạn
C=/2x-20/-/2x-3/\(\le\)/2x-20-2x-3/ (Do tính chất /a/-/b/ bé hơn hoặc bằng /a-b/
hay C\(\le\)-23
Tìm x
a. 5x.(12x+7)-3x.(20x-5)=-150
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
c. 9x2-1+(3x-1)2=0
d. 3x.(x-2)-(3x+2).(x-1)=7
e. (2x-1)2-(2x+5).(2x-5)=20
f. 4x2-5=4
a. 5x.(12x+7)-3x.(20x-5)=-150
x=-3
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
x=43/10
c. 9x2-1+(3x-1)2=0
x=1/3
d. 3x.(x-2)-(3x+2).(x-1)=7
x=-5/2
e. (2x-1)2-(2x+5).(2x-5)=20
x=3/2
f. 4x2-5=4
x=3/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
\(x^2+2x=\sqrt{2x^2+4x+8}+20\)
Lời giải:
Đặt \(\sqrt{2x^2+4x+8}=t\Rightarrow x^2+2x+4=\frac{t^2}{2}\)
Khi đó, PT đã cho trở thành:
\(\frac{t^2}{2}=t+24\Leftrightarrow t^2-2t-48=0\)
\(\Leftrightarrow (t+6)(t-8)=0\Rightarrow t=8\) (do \(t\geq 0\))
Khi đó \(x^2+2x+4=\frac{t^2}{2}=32\Leftrightarrow x^2+2x-28=0\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}x=-1+\sqrt{29}\\x=-1-\sqrt{29}\end{matrix}\right.\) (đều thỏa mãn)