Cho tam vice ABC can tai A duong cao AH phan giac BC .Tinh cac goc cua tam giac ABC biet BD =2AH
cau 1 cho tam giac can abc co ab=ac=17 va bc=30 ve ra ngoai tam giac abc tam giac bcd voi cbd=90 do va cd song song voi ab tinh do dai bd
cau 2 cho tam giac abc co goc b =70 do goc c =40 do cac duong cao bd va ce cat nhau tai h goi i la trung diem cua ah m la giao cua tia phan giac goc eid voi bc tinh goc imd
Cho tam giac ABC can o A, duong cao AD, phan giac BE. Tinh cac goc cua tam giac ABC, biet BE = 2 AD.
cho tam giac ABC can tai A ;AB=AC=17;BC=16. tinh duong cao AH va goc A, goc B cua tam giac ABC
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
De bai : Cho tam giac ABC co AB=9 cm,BC=12 cm,BC=15 cm
a,C/m tam giac ABC vuong
b,Duong phan giac cua goc B cat AC tai D . Tinh AD,DC
c,Duong cao AH cat BD tai I. Chung minh IH.BD=IA.IB
d,Chung minh tam giac AID can
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)
Giup mink !
Bai 1: Cho tam giac ABC co 3 goc nhon . Cac duong cao lan luot la AD,BE,CF cat nhau tai H
a.C/m tam giac AEF dong dang tam giac ABC
b.C/m tam giac AEF dong dang tam giac DBF
Bai 2: Cho tam giac ABC vuong tai A , AB=9 cm,AC=6 cm , duong cao AH , duong phan giac BD. Ke DE vuong goc BC (E thuoc BC), duong thang DE cat duong thang AB tai F .
a.Tinh BC,AH?
b.Chung minh tam giac EBF dong dang tam giac EDC
c.Goi I la giao diem cua AH va BD. Chung minh AB.BI=BH.BD
d.C/m BD vuong goc CF
e.Tinh ti so dien tich cua 2 tam giac ABC va tam giac BCD
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
cho tam giaac abc can tai a .ve ah vuong goc voi bc tai h co ab = 5 cm , bc =6cm
a )chung minh 2 tam giac abh =ach
b ) tinh do dai ah
c) hay cho biet trong tam giac tren ahla duong nao trong cac duong con lai : duong trung tuyn , duong cao, duong phan giac , duong trung truc
(ve hinh giup mk luon nha . can gap . cam on nhiu)
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác
cho tam giac abc vuong can tai a. goi b la diem tren canh bc, bi la phan giac cua tam giac abd, duong cao im cua tam giac bid cat duong vuong goc voi ac ke tu c tai n. tinh goc ibn
Giai ho minh de nay voi cac p:cho tam giac ABC can tai A,duong cao AH,AB=8cm,BC=10cm
a,tinh BH,AH
b,goi BK va CI la cac duong phan giac cua tam giac ABC,chung minh rang tu giac BIKC la hinh thang can
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
cho tam giac ABC( AB<AC) noi tiep duong tron BC co duong cao AH, H thuoc BC, duong phan giac trong cua goc A trong tam giac ABC cat duong tron do tai K, ( K khac A) biet \(\frac{AH}{HK}=\frac{\sqrt{15}}{5}\) tính goc ACB