Giup mink !
Bai 1: Cho tam giac ABC co 3 goc nhon . Cac duong cao lan luot la AD,BE,CF cat nhau tai H
a.C/m tam giac AEF dong dang tam giac ABC
b.C/m tam giac AEF dong dang tam giac DBF
Bai 2: Cho tam giac ABC vuong tai A , AB=9 cm,AC=6 cm , duong cao AH , duong phan giac BD. Ke DE vuong goc BC (E thuoc BC), duong thang DE cat duong thang AB tai F .
a.Tinh BC,AH?
b.Chung minh tam giac EBF dong dang tam giac EDC
c.Goi I la giao diem cua AH va BD. Chung minh AB.BI=BH.BD
d.C/m BD vuong goc CF
e.Tinh ti so dien tich cua 2 tam giac ABC va tam giac BCD
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao