Giari bptr sau
\(\dfrac{7x-1}{6}+2x\ge\dfrac{16-x}{5}\)
a/\(\dfrac{2x+3}{-4}\ge\dfrac{4-x}{-3}\)
b/\(\dfrac{7x-1}{6}+2x\le\dfrac{16-x}{5}\)
a) \(\dfrac{2x+3}{-4}\)≥\(\dfrac{4-x}{-3}\)
=> 3(2x+3)≥4(4-x)
<=> 6x+9≥16-4x
<=> 10x ≥ 7
<=> x ≥\(\dfrac{7}{10}\)
b) \(\dfrac{7x-1}{6}+2x\) ≤ \(\dfrac{16-x}{5}\)=> 5(7x-1) + 30*2x ≤ 6(16-x)<=> 35x - 5 +60x ≤ 96 -6x<=> 101x ≤ 101<=> x ≤ 1Giai bptr sau
\(\dfrac{6x+5}{4}-\dfrac{x-3}{2}< \dfrac{6x-1}{3}+\dfrac{7x-1}{12}\)
Giải PT sau?:
\(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
=>5(7x-1)+60x=6(16-x)
=>35x-5+60x-96+6x=0
=>101x=101
hay x=1
\(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(\Leftrightarrow\dfrac{5\left(7x-1\right)}{30}+\dfrac{60x}{30}=\dfrac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5-96+6x=0\)
\(\Leftrightarrow101x-101=0\\ \Leftrightarrow101x=101\\ \Leftrightarrow x=1\)
\(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(\Leftrightarrow\dfrac{5\left(7x-1\right)}{30}+\dfrac{60x}{30}=\dfrac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
Vậy: Phương trình có tập nghiệm \(S=\left\{1\right\}\)
Gỉai bptr sau:
a,\(\dfrac{x-5}{4}-\dfrac{2x-1}{2}< 3\)
b,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}>\dfrac{x\left(2x+3\right)}{2}-5\)
a: \(\Leftrightarrow x-5-2\left(2x-1\right)< 12\)
=>x-5-4x+2<12
=>-3x-3<12
=>-3x<15
hay x>-5
b: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)>10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5-20x^2-30x+100>0\)
=>-15x+83>0
hay x<83/15
\(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(\dfrac{\left(7x-1\right).5}{6.5}+\dfrac{2x.30}{30}=\dfrac{\left(16-x\right).6}{5.6}\)
khử mẫu
=>(7x-1).5+60x=(16-x).6
=>35x-5+60x=96-6x
=>35x-5+60x-96+6x=0
=>101x-101=0
=>x=1
=>
a, \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b, \(\dfrac{x+2}{x-3}-\dfrac{x^2+6}{x^2-3x}\)
c, \(\dfrac{1}{9x-18}+\dfrac{16-7x}{72-18x}+\dfrac{5}{12x-24}\)
a.\(\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{1}{x}\)
tim x:
\(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
=>5(7x-1)+60x=6(16-x)
=>35x-5+60x=96-6x
=>95x-5=96-6x
=>101x=101
=>x=1
bài 3: giải phương trình
a) \(\dfrac{5x-7
}{3}=\dfrac{5-3x}{2}\)
b) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
c) \(\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
d) \(4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\)
a: =>10x-14=15-9x
=>19x=29
hay x=29/19
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x+9=32x+60
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>101x=101
hay x=1
d: \(\Leftrightarrow12\left(\dfrac{1}{2}-\dfrac{3}{2}x\right)=-5x+6\)
\(\Leftrightarrow6-18x+5x-6=0\)
=>-13x=0
hay x=0
\(a,\dfrac{5x-7}{3}=\dfrac{5-3x}{2}\\ \Leftrightarrow2\left(5x-7\right)=3\left(5-3x\right)\\ \Leftrightarrow10x-14=15-9x\\ \Leftrightarrow10x-14-15+9x=0\\ \Leftrightarrow19x-19=0\\ \Leftrightarrow x=1\)
\(b,\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\\ \Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\\ \Leftrightarrow30x+9=36+24+32x\\ \Leftrightarrow36+24+32x-30x-9=0\\ \Leftrightarrow2x+51=0\\ \Leftrightarrow x=-\dfrac{51}{2}\)
\(c,\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{7x-1+12x}{6}=\dfrac{16-x}{5}\\ \Leftrightarrow5\left(19x-1\right)=6\left(16-x\right)\\ \Leftrightarrow95x-5=96-6x\\ \Leftrightarrow95x-5-96+6x=0\\ \Leftrightarrow101x-101=0\\ \Leftrightarrow x=1\)
\(d,4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\\ \Leftrightarrow12\left(0,5-1,5x\right)=6-5x\\ \Leftrightarrow6-18x=6-5x\\ \Leftrightarrow6-5x-6+18x=0\\ \Leftrightarrow13x=0\\ \Leftrightarrow x=0\)
Giaỉ bptr sau
\(\dfrac{3x-2}{4}-x< \dfrac{x+2}{5}\)
\(\dfrac{3x-2}{4}-x< \dfrac{x+2}{5}\\ \Leftrightarrow\dfrac{5\left(3x-2\right)}{20}-\dfrac{20x}{20}-\dfrac{4\left(x+2\right)}{20}< 0\\ \Leftrightarrow15x-10-20x-4x-8< 0\\ \Leftrightarrow-9x-18< 0\\ \Leftrightarrow-9x< 18\\ \Leftrightarrow x>-2\)