Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2019 lúc 8:01

Ta có: AB → = (−a; b; 0) và  AC →  = (−a; 0; c)

Vì  AB → .  AC →  = a 2 > 0 nên góc BAC là góc nhọn.

Lập luận tương tự ta chứng minh được các góc  ∠ B và  ∠ C cũng là góc nhọn.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 0:24

a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.

\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)

b) 

Theo định lí tổng 3 góc trong tam giác ABC, ta có:

\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)

 \( \Rightarrow\widehat C = \widehat B = {40^o}\)

\( \Rightarrow \) ABC là tam giác cân tại A.

Eren Yeager
Xem chi tiết
Nguyễn thị ngọc hoan
Xem chi tiết
Minh Nhân
23 tháng 1 2021 lúc 15:40

Kimian Hajan Ruventaren
Xem chi tiết
Ngô Thành Chung
14 tháng 1 2021 lúc 20:39

Tọa độ trọng tâm G của ΔABC là \(G\left(1;\dfrac{m}{3}\right)\)

⇒ \(\left\{{}\begin{matrix}\overrightarrow{AG}=\left(2;\dfrac{m}{3}\right)\\\overrightarrow{BG}=\left(-3;\dfrac{m}{3}\right)\end{matrix}\right.\)

Để ΔGAB vuông tại G

⇒ GA ⊥ GB

⇒ \(\overrightarrow{GA}\) ⊥ \(\overrightarrow{GB}\)

⇒ \(\overrightarrow{GA}.\overrightarrow{GB}=0\)

⇒ 2 . (-3) + \(\dfrac{m^2}{9}\) = 0

⇒ m2 = 6 . 9 = 54

⇒ m = \(\pm\sqrt{54}\)

Mình chắc chắn cách làm của mình là đúng còn về tính toán thì chưa chắc nên bạn tự kiểm tra nhá hiha

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2018 lúc 17:36

Gọi tọa độ điểm H(a;b)

Ta có:  A H → = a + 1 ; b − 1 ,   B H → = a ; b − 2 ,   B C → = 1 ; − 1 ,   A C → 2 ; 0

Do H là trực tâm tam giác ABC nên:

A C → . B H → = 0 B C → . A H → = 0 ⇒ 2. a + 0. b − 2 = 0 1. a + 1 − 1. b − 1 = 0 ⇒ a = 0 b = 2

Vậy H (0; 2).

Chọn A

Trang Vũ
Xem chi tiết
Ling ling 2k7
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
21 tháng 6 2021 lúc 10:07

Ta có: \(AC^2+BC^2=\left(a\sqrt{2}\right)^2+\left(a\sqrt{3}\right)^2=2a^2+3a^2=5a^2\)

\(AB^2=\left(a\sqrt{5}\right)^2=5a^2\)

=> \(AB^2=AC^2+BC^2\)

=> Tam giác ABC vuông tại C (định lí Pytago đảo)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 6 2018 lúc 7:22

Chọn B.

Ta có:

Mặt khác 

Suy ra diện tích tam giác ABC là 1/2.AB.BC = 6.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 10 2018 lúc 2:35

Ta có:

Suy ra tam giác ABC vuông tại A do đó trực tâm H trùng với A

Vậy H( -1 ; 3)

Chọn B.