Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoàng đá thủ
Xem chi tiết
Toru
13 tháng 12 2023 lúc 20:38

\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

hay giá trị của biểu thức trên luôn dương

\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)

Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)

hay giá trị của biểu thức trên luôn dương

Nguyễn Thanh Hằng
Xem chi tiết
Nguyễn Việt Hoàng
19 tháng 8 2020 lúc 15:23

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

Khách vãng lai đã xóa
Nguyễn Thanh Hằng
19 tháng 8 2020 lúc 15:24

thanks bạn nhìu

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
19 tháng 8 2020 lúc 15:40

A = x( x - 6 ) + 10

A = x2 - 6x + 10

A = ( x2 - 6x + 9 ) + 1

A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 - 2x + 9y2 - 6y + 3

B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1

B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

Khách vãng lai đã xóa
Cu Giai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 8 2017 lúc 12:44

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)

bool
Xem chi tiết
Seulgi
18 tháng 3 2020 lúc 21:13

A = x(x - 6) + 10

A = x^2 - 6x + 9 + 1

A = (x - 3)^2 + 1 > 1

B = x^2 - 2x + 9y^2 - 6y + 3

B = (x^2 - 2x + 1) + (9y^2 - 6y + 1) + 1

B = (x - 1)^2 + (3y - 1)^2 + 1 > 1

Khách vãng lai đã xóa
Việt Anh
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 9 2021 lúc 18:23

a) \(x^2-3x+8=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{23}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\)

b) \(2x^2-2x+2=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}>0\)

Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 21:57

a: Ta có: \(A=x^2-3x+8\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{23}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\forall x\)

b: Ta có: \(B=2x^2-2x+2\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\)

Nguyễn Nhã Linh
Xem chi tiết
Phan Nghĩa
5 tháng 8 2020 lúc 20:26

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

Khách vãng lai đã xóa
Chirido Ridofukuno
Xem chi tiết
Ngyen van duy
2 tháng 8 2017 lúc 21:00

ta có

B=(x^2-2x+1)+[(3y)^2-6y+1]+1

B=(x-1)^2+(3y-1)^2+1

Mả (x-1)^2+(3y_1)^2 luôn luôn >=0

Vậy B mìn =1khi và chỉ khi x=1 va y=1/3

Chirido Ridofukuno
2 tháng 8 2017 lúc 21:34

À không cần min bạn nhé. Dù sao cũng cảm ơn.

minh anh
Xem chi tiết
Đinh Tuấn Việt
19 tháng 6 2016 lúc 18:43

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

Dung Phạm
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 10 2020 lúc 0:56

Bài 1:

\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)

\(B=\left(x-3\right)^2\ge0\)

\(B_{min}=0\) khi \(x=3\)

\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)

\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)

\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 10 2020 lúc 0:59

Bài 2:

\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)

\(A_{max}=-1\) khi \(x=2\)

\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(B_{max}=7\) khi \(x=2\)

\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)

\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)

\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)

\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)

Khách vãng lai đã xóa