Ctỏ rằng các biểu thức sau luôn dương
a,x^2-6x+10
b,x^2-2x+5
c,2x^2+6x
d,x^2+y^2-x+6y+10
Chứng minh các giá trị của các biểu thức sau luôn dương
a)x^2-2x+y^2+4y+6
b)x^2-2x+2
\(a)x^2-2x+y^2+4y+6\\=(x^2-2x+1)+(y^2+4y+4)+1\\=(x^2-2\cdot x\cdot1+1^2)+(y^2+2\cdot y\cdot2+2^2)+1\\=(x-1)^2+(y+2)^2+1\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
hay giá trị của biểu thức trên luôn dương
\(b)x^2-2x+2\\=(x^2-2x+1)+1\\=(x^2-2\cdot x\cdot1+1^2)+1\\=(x-1)^2+1\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+1\ge1>0\forall x\)
hay giá trị của biểu thức trên luôn dương
chứng minh rằng các biểu thức sau luôn luôn dương với mọi x
A = x (x - 6) + 10
B = x2 - 2x + 9y2 - 6y + 3
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
thanks bạn nhìu
A = x( x - 6 ) + 10
A = x2 - 6x + 10
A = ( x2 - 6x + 9 ) + 1
A = ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
B = x2 - 2x + 9y2 - 6y + 3
B = ( x2 - 2x + 1 ) + ( 9y2 - 6y + 1 ) + 1
B = ( x - 1 )2 + ( 3y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )
tìm gtnn của các biểu thức sau
Q=2x2-6x
M=x2+y2-x+6y+10
Ta có : 2x2 - 6x
= \(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)
Q\(=\left(\sqrt{2}x-6\right)^2-36\)
Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)
Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)
Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)
Chướng minh các biểu thức :
A=x(x-6)+10 luôn dương với mọi x
B= x^2-2x+9y^2-6y+3 luôn dương với mọi x,y
A = x(x - 6) + 10
A = x^2 - 6x + 9 + 1
A = (x - 3)^2 + 1 > 1
B = x^2 - 2x + 9y^2 - 6y + 3
B = (x^2 - 2x + 1) + (9y^2 - 6y + 1) + 1
B = (x - 1)^2 + (3y - 1)^2 + 1 > 1
chứng minh biểu thức luôn dương
a) A = x^2-3x+8
b) b = 2x^2-2x+2
mình cần kết quả 1 cách nhanh nhất
a) \(x^2-3x+8=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{23}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}>0\)
b) \(2x^2-2x+2=2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}>0\)
a: Ta có: \(A=x^2-3x+8\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{23}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\forall x\)
b: Ta có: \(B=2x^2-2x+2\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\forall x\)
C/m rằng các biểu thức sau luôn âm (hoặc luôn dương) với mọi x:
a) A = x^2 + 2x + 2
b) B = x^2 + x + 1
c) C = 2x^2 - 4x + 2
d) D = -x^2 - 6x - 11
e) E = -x^2 + x - 1
f) F = -3x^2 - 6x - 4
\(A=x^2+2x+2=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\)
\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
tự làm tiếp đi chị
Chứng minh rằng biểu thức sau luôn mang giá trị dương với mọi x, y: B= \(x^2-2x+9y^2-6y+3\)
ta có
B=(x^2-2x+1)+[(3y)^2-6y+1]+1
B=(x-1)^2+(3y-1)^2+1
Mả (x-1)^2+(3y_1)^2 luôn luôn >=0
Vậy B mìn =1khi và chỉ khi x=1 va y=1/3
À không cần min bạn nhé. Dù sao cũng cảm ơn.
chứng minh rằng biểu thức luôn luôn dương với mọi x,y
\(A=x\left(x-6\right)+10\)
\(B=x^2-2x+9y^2-6y+3\)
\(A=x\left(x-6\right)+10=x^2-6x+10\)
\(=\left(x-3\right)^2+1>0\) với mọi x
\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y
Bài 1:Tìm GTNN của các biểu thức sau:
a. x^2 + 2x + 2
b. x^2 - 6x +9
c. 2x^2 - 6x
d. x^2 + y^2 - x + 6y + 10
Bài 2: Tìm GTLN của các biểu thức sau :
a. 4x - x^2 - 5
b. 4x - x^2 + 3
c. x - x^2
d. 2x + 4y - x^2 - y^2 + 6
e. 2x - 2x^2 - 5
Bài 1:
\(A=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)
\(A_{min}=1\) khi \(x+1=0\Leftrightarrow x=-1\)
\(B=\left(x-3\right)^2\ge0\)
\(B_{min}=0\) khi \(x=3\)
\(C=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
\(C_{min}=\frac{9}{2}\) khi \(x=\frac{3}{2}\)
\(D=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(D=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(D_{min}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1\)
\(A_{max}=-1\) khi \(x=2\)
\(B=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(B_{max}=7\) khi \(x=2\)
\(C=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(C_{max}=\frac{1}{4}\) khi \(x=\frac{1}{2}\)
\(D=-\left(x^2-2x+1\right)-\left(y^2-4y+4\right)+11\)
\(D=-\left(x-1\right)^2-\left(y-2\right)^2+11\le11\)
\(D_{max}=11\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(E=-\frac{1}{2}\left(4x^2-4x+1\right)-\frac{9}{2}=-\frac{1}{2}\left(2x-1\right)^2-\frac{9}{2}\le-\frac{9}{2}\)
\(E_{max}=-\frac{9}{2}\) khi \(x=\frac{1}{2}\)