a) \(x^2-6x+10=x^2+2\times x\times3+9+1=\left(x+3\right)^2+1\)
vì (x+3)2 \(\ge0\)với mọi \(x\in R\)
nên (x+3)2 +1 > 0 ...........................
vậy x2 - 6x + 10 >0 ........................
b, \(x^2-2x+5=x^2-2.1.x+1+4=\left(x-1\right)^2+4\)
vì (x-1)2 \(\ge0\)với mọi x \(\in R\)
nên (x-1)2 + 4 > 0 ..........................
vậy x2 - 2x + 5 > 0 .......................
d, \(x^2+y^2-x+6y+10=\left(x^2-2x\times\frac{1}{2}+\frac{1}{4}\right)+\left(y^2+2\times3x+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
vì (x-1/2)^2\(\ge0\)với mọi x \(\in R\)
(y+3)2 .....................y ...........
(x-1/2)^2+(y+3)^2 \(\ge0\)với mọi x, y \(\in R\)
(x-1/2)^2+(y+3)^2+3/4>0 với mọi x, y \(\in R\)
vậy x^2 + y^2 -x+6y+10 >0với mọi x, y \(\in R\)