) Tính giá trị các biểu thức: a) 2 3 A 4x 6xy 3y tại x 2; y 2 b) 2016x 2017y B 2016x 2017y biết x y 2 3
Cho \(A = - ( - 4x + 3y),B = 4x + 3y,C = 4x - 3y\). Khi tính giá trị của biểu thức tại \(x = - 1\) và \(y = - 2\), bạn An cho rằng giá trị của các biểu thức A và B bằng nhau, bạn Bình cho rằng giá trị của các biểu thức A và C bằng nhau. Theo em, bạn nào đúng? Vì sao?
Thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho, ta có:
\(A = - ( - 4x + 3y) = - ( - 4. - 1 + 3. - 2) = - (4 + - 6) = - ( - 2) = 2\).
\(B = 4x + 3y = 4. - 1 + 3. - 2 = - 4 + - 6 = - 10\).
\(C = 4x - 3y = 4.( - 1) - 3.( - 2) = - 4 - - 6 = - 4 + 6 = 2\).
Ta thấy 2 ≠ -2 = 2. Do vậy, khi thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho ta thấy giá trị của các biểu thức A và C bằng nhau.
Vậy bạn Bình nói đúng.
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
Tính giá trị biểu thức:
A= 3x2 - 2x + 3y2 - 2y + 6xy + 1953 tại x+y=5
A= (3x2+3y2) - 2 (x+y) +6xy+1953
A= 3(x2+y2) - 2(x+y) +6xy+1953
A= 3(x2+2xy+y2 - 2xy) - 2(x+y) +6xy +1953
A= 3 [(x+y)2 -2xy] - 2(x+y) +6xy+1953
A= 3(x+y)2 -6xy - 2(x+y) +6xy+1953
A= 3(x+y)2 - 2(x+y)+1953
Thayy x+y =5 vào A, ta được:
A= 3.52 - 2.5 +1953
A= 2018.
Tính giá trị biểu thức:
a) [ 12 ( 2 x + 3 y ) 3 - 18 ( 2 x + 3 y ) 2 ]:(-6x - 9y) tại x = 3 2 ;y = l;
b) [ ( 2 x - y ) 4 + 8 ( y - 2 x ) 2 - 2x + y]: (2y - 4x) tại x = 1; y = -2.
Tính giá trị biểu thức:
B=x^3-6x^2y+12xy^2-8y^3 tại x=12 và y=-4
B3 Rút gọn biểu thức
b,,2(2x+5)^2-3(4x+1)(1-4x)
c(x-4)^2-2(x-4)(x+5)+(x+5)^2
B4 Phân tích đa thức sau thành nhân tử
a x^2-9+(x-3)^2
b,x^3-4x^2+4x-xy^2
c.x^3-4x^2+12x-27
d,3x^2-7x-10
e,5x^3-5x^2y-10x^2+10xy
f,3x^2-6xy+3y^2-12z^2
HELP MEEEEEEEEEEEEEEEEEE
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
Cho đa thức
\(A=\left(4x^2+x^2y-5y^3\right)+5.\left(\frac{5}{3}x^5-6xy^2-x^2y\right)+3y.\left(\frac{x^2}{3}+10y^2\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
a) rú gọn biểu thứcA
b) Tính giá trị biểu thức tại \(x=-\frac{1}{2};y=-\frac{1}{3}\)
c)Tìm đa thức D sao cho A+D=\(-2x^3+6y^3-3x^2y\)
Bài 1:Thực hiện phép tính a) x(3x^2 + 2x) b) (x + 3)^2 c) (x - 2)^3 Bài 2: Phân tính đa thức thành nhân tử a) 6x^3y - 9x^2y^2 b) 4x^2 - 25 c) x^2y - xy + 7x - 7y Bài 3: a) Tính nhanh giá trị biểu thức: M = 4x^2 - 20x + 25 tại x = 105/2 b) Tìm x, biết: x^3 - 1/9x = 0
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.