cho tam giác ABC có BC=8cm,các đường trung tuyến BD,CE cắt nhau tại G. C/MBD+CE=12cm
Cho tam giác ABC có BC = 8cm , các đg trung tuyến BD , CE cắt nhau tại G .
Cm : BD + CE > 12cm
Ta có G là trọng tâm tam giác ABC (BG=2BD/3 ; CG=2CG/3):
⇒ BD+CE= 3(BG+CG)/2 (1)
Xét tam giác BGC (trong một tam giác thì tổng hai cạnh luôn lớn hơn cạnh còn lại):
⇒ BG+CG > BC (2)
Từ (1) và (2), ta suy ra: BD+CE >3BC/2 ⇔ BD+CE > 12 (cm)
Bài 1 : Cho tam giác ABC có BC = 8cm, các đường trung tuyến BD và CE cắt nhau tại G.
Chứng minh BD + CE > 12cm
cho tam giác ABC có BC=8, các đường trung tuyến BD,CE cắt nhau taih G. Chứng minh rằng BD+CE>12cm
Xét tam giác ABC : BD-đường trung tuyến
CE-đường trung tuyến
BD cắt CE tại G
=> G - trọng tâm tam giác ABC.
=> BG=2/3 BD
=>CE=2/3 CE
Xét tam giác BGC
=> BG+CG > BC ( BĐT trong tam giác)
=>2/3 BD +2/3 CE > BC
=> 2/3 (BD+CE ) > BC
Thay số : BC=8 cm ta đc :
2/3(BD+CE) > 8cm
=> 3/2 . 2/3 (BD+CE)> 3/2 . 8cm
=> BD+CE > 12cm
Cho tam giác ABC có BC = 8 cm, các đường trung tuyến BD, CE cắt nhau tại G. Chứng minh BD + CE > 12 cm.
cho tam giác (tg) ABC, hai đường trung tuyến BD, CE cắt nhau tại G. Biết rằng BC=10cm, BD=12cm, CE=9cm.
a) CM tg GBC vuông.
b) Tính độ dài cạnh DE.
cái này là toán lớp 7 nha mng, mk nhấp nhầm
a) ad tính chất 3 đường trung tuyến đồng quy
=> BG=2/3BD
=> BG=8
Và: CG=2/3CE
=> CG=6
AD pytago:
=> BC^2=BG^2+CG^2
(giải thích chỗ này nhá) do: BC^2=8^2+6^2
=> BC^2=100
=> BC =10
b) Cx ad PYTAGO:
=> DE^2=EG^2+GD^2
=> DE^2=4^2+3^2
=> DE^2=25
=> DE=5
Bài 1: 2 đường trung tuyến AM và BN của tam giác ABC cắt nhau tại G
a) S ABN= 1,5 S ABG
b) Cho S ABG=105 cm. Tính S ABC
Bài 2: Cho tam giác ABC 2 trung tuyến BD và CE cắt nahu tại G cho biết BC=10cm, BD=9cm, CE-12cm
a) CM góc BGC=90 độ
b) S ABC?
Cho tam giác ABC có các đường trung tuyến BD và CE vuông góc với nhau. Tính BC biết BD=9cm, CE=12cm
cho tam giác ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Biết BD=CE. Chứng minh DG+EG > \(\dfrac{1}{2} \)BC
DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC
Cho tam giác ABC, AB=8cm, AC=10cm, BC=12cm. Các đường phân giác BD và CE cắt nhau tại I. Tính AD, DC, AE, BE
Áp dụng định lý phân giác ta có:
\(\dfrac{AD}{DC}=\dfrac{AB}{AC}=\dfrac{4}{5}\Rightarrow\dfrac{AD}{4}=\dfrac{DC}{5}=\dfrac{AD+DC}{4+5}=\dfrac{10}{9}\)
\(\dfrac{AD}{4}=\dfrac{10}{9}\Rightarrow AD=\dfrac{40}{9}\left(cm\right)\\ \dfrac{DC}{5}=\dfrac{10}{9}\Rightarrow DC=\dfrac{50}{9}\)
Áp dụng định lý phân giác ta có:
\(\dfrac{AE}{EB}=\dfrac{AC}{BC}=\dfrac{5}{6}\Rightarrow\dfrac{AE}{5}=\dfrac{EB}{6}=\dfrac{AE+EB}{5+6}=\dfrac{8}{11}\)
\(\dfrac{AE}{5}=\dfrac{8}{11}\Rightarrow AE=\dfrac{40}{11}\left(cm\right)\\ \dfrac{EB}{6}=\dfrac{8}{11}\Rightarrow EB=\dfrac{48}{11}\left(cm\right)\)