\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}giúp}em\)
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
Tính:
1) ( \(2\sqrt{5}-\sqrt{7}\) ) \(\left(2\sqrt{5}+\sqrt{7}\right)\)
2) \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
3) \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}\)
4) \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
5) \(\left(\sqrt{5}-\sqrt{6}\right)^2\)
6) \(\left(\sqrt{3}-\sqrt{5}\right)^2\)
7) \(\left(2\sqrt{2}+\sqrt{3}\right)^2\)
\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)
1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)
4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)
6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)
7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)
a : \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
c : \(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
d : \(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\)
a.
$A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$
$A\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}$
$A\sqrt{2}=\sqrt{(\sqrt{3}-1)^2}+\sqrt{(\sqrt{3}+1)^2}$
$=|\sqrt{3}-1|+|\sqrt{3}+1|=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}$
$\Rightarrow A=2\sqrt{3}: \sqrt{2}=\sqrt{6}$
---------------------
$B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}$
$B\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}$
$B\sqrt{2}=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}$
$=|\sqrt{7}-1|-|\sqrt{7}+1|=\sqrt{7}-1-(\sqrt{7}+1)=-2$
$\Rightarrow B=-2:\sqrt{2}=-\sqrt{2}$
\(a,\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A-\sqrt{2}=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\cdot\sqrt{2}\\ =\sqrt{2-\sqrt{3}}\cdot\sqrt{2}-\sqrt{2+\sqrt{3}}\cdot\sqrt{2}\\ =\sqrt{\left(2-\sqrt{3}\right)\cdot2}-\sqrt{\left(2+\sqrt{3}\right)\cdot2}\\ =\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1-\sqrt{3}-1\\ =-2\)
Ta có :
\(A-\sqrt{2}=-2\\ \Leftrightarrow A=\dfrac{-2}{\sqrt{2}}=\dfrac{-\left(\sqrt{2}\right)^2}{\sqrt{2}}=-\sqrt{2}\)
__
C làm giống câu a, nhé.
__
\(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}+1\right|-\left|\sqrt{5}-2\right|\\ =2\sqrt{5}+1-\sqrt{5}+2\\ =3+\sqrt{5}\)
__
\(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\\ =\sqrt{48-2\cdot4\cdot\sqrt{3}\cdot2+4}+\left|4\sqrt{3}-7\right|\\ =\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\cdot\sqrt{3}\cdot2+2^2}+4\sqrt{3}-7\\ =\sqrt{\left(4\sqrt{3}-2\right)^2}+4\sqrt{3}-7\\ =4\sqrt{3}-2+4\sqrt{3}-7\\ =8\sqrt{3}-9\)
c.
$C=\sqrt{(2\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|2\sqrt{5}+1|-|\sqrt{5}-2|=2\sqrt{5}+1-(\sqrt{5}-2)=\sqrt{5}+3$
d.
$D=\sqrt{52-16\sqrt{3}}+\sqrt{4\sqrt{3}-7)^2}$
$=\sqrt{(4\sqrt{3})^2-2.4\sqrt{3}.2+2^2}+|4\sqrt{3}-7|$
$=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|$
$=|4\sqrt{3}-2|+|4\sqrt{3}-7|$
$=4\sqrt{3}-2+7-4\sqrt{3}=5$
Rút gọn biểu thức
a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
giúp em với ạ, em cảm ơn!
a) \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}=\sqrt{5}+\sqrt{5}+\sqrt{5}-1=-1+3\sqrt{5}\)
b) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}+1+\sqrt{3}=2-\sqrt{3}+1+\sqrt{3}=3\)
a: \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-1\)
\(=3\sqrt{5}-1\)
b: \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}+1\)
=3
1.\(\sqrt{5x-1}-\sqrt{3x-2}-\sqrt{x-1}=0 \)
2.\(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)^2}-\sqrt[3]{\left(2-x\right)\left(7+x\right)}=3\)
giúp em đi mà =.=~
2. đặt \(\sqrt[3]{2-x}=a\) và \(\sqrt[3]{7+x}=b\)
thì ta có hệ pt \(\int_{a^3+b^3=9}^{a^2+b^2-ab=3}\) <=>\(\int_{a^2-ab+b^2=3}^{\left(a+b\right)\left(a^2-ab+b^2\right)=9}\)<=>\(\int_{a^3+b^3=9}^{a+b=9:3=3}\)
đến đây bạn tự giải nốt nhé
1. \(\sqrt{5x-1}-\sqrt{3x-2}-\sqrt{x-1}=0\) (ĐKXĐ : \(x\ge1\)
\(\Leftrightarrow\left(\sqrt{5x-1}-3\right)-\left(\sqrt{3x-2}-2\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\frac{5x-1-3^2}{\sqrt{5x-1}+3}\right)-\left(\frac{3x-2-2^2}{\sqrt{3x-2}+2}\right)-\left(\frac{x-1-1^2}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}-\frac{3\left(x-2\right)}{\sqrt{3x-2}+2}-\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}\right)=0\)
TH1: Với \(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}=0\). Vì \(x\ge1\) nên \(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}< 0\). Dấu đẳng thức không xảy ra nên phương trình này vô nghiệm.Với x - 2 = 0 => x = 2 (TMĐK)Vậy phương trình có nghiệm x = 2
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right).\)
2)\(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
3)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4)\(\sqrt{2\sqrt{3}-4}+\sqrt{2\sqrt{3}+4}\)
5)\(\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
6)\(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
7)\(\sqrt{5-2\sqrt{7-2\sqrt{6}}}\)
AI ĐÓ TỐT BỤNG GIÚP MK ZỚI:((
1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)
\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)
\(=6-8=-2\)
2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
\(=3^2-\left(\sqrt{5}\right)^2\)
\(=9-5=4\)
3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)
=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn
5) Đặt \(A=\sqrt{4\sqrt{6}+11}-\sqrt{11-4\sqrt{6}}\)
\(\Rightarrow A^2=\left(\sqrt{11+4\sqrt{6}}-\sqrt{11-4\sqrt{6}}\right)^2\)
\(=11+4\sqrt{6}-2\sqrt{\left(11+4\sqrt{6}\right)\left(11-4\sqrt{6}\right)}+11-4\sqrt{6}\)
\(=22-2\sqrt{121-96}\)
\(=22-2\sqrt{5}\)
=> \(A=\sqrt{22-2\sqrt{5}}\)
6) Đặt \(B=\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\)
\(\Leftrightarrow B^2=\left(\sqrt{10+2\sqrt{11}}-\sqrt{10-2\sqrt{11}}\right)^2\)
\(=10+2\sqrt{11}-2\sqrt{\left(10+2\sqrt{11}\right)\left(10-2\sqrt{11}\right)}+10-2\sqrt{11}\)
\(=20-2\sqrt{100-44}\)
\(=20-4\sqrt{14}\)
=> \(B=\sqrt{20-4\sqrt{14}}\)
\(1.\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)
\(2.\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}+10\sqrt{5}\)
\(3.\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)
\(4.\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
Nếu được thì các bạn giải thích giúp mình với ạ :3, mình cảm ơn :3
\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\) ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))
\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)
\(=\sqrt{4\cdot\sqrt{7}}\)
\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)
\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)
\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)
\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)
\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}\)
cuối lười tính nên thôi nhá :>
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)