Tính B = \(\sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
Cho cot α = 3. Tính giá trị của các biểu thức sau
a) \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}\)
b)\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)
Giúp em với ạ, em đang cần gấp!
\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)
\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)
a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)
b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)
Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)
\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)
Rút gọn:
A= \(\sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
B= \(\left(cos\alpha-sin\alpha\right)^2+\left(cos\alpha+sin\alpha\right)^2\)
C= \(\dfrac{\left(cos\alpha-sin\alpha\right)^2-\left(cos\alpha+sin\alpha\right)^2}{sin\alpha.cos\alpha}\)
Lời giải:
\(A=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a(\sin ^2a+\cos ^2a)\)
\(=(\sin ^2a+\cos ^2a)^3=1^3=1\)
\(B=(\cos ^2a+\sin ^2a-2\sin a\cos a)+(\cos ^2a+\sin ^2a+2\sin a\cos a)\)
\(=(1-2\sin a\cos a)+(1+2\sin a\cos a)=2\)
\(C=\frac{(\cos ^2a+\sin ^2a-2\sin a\cos a)-(\cos ^2a+\sin ^2a+2\sin a\cos a)}{\sin a\cos a}=\frac{(1-2\sin a\cos a)-(1+2\sin a\cos a)}{\sin a\cos a}\)
$=\frac{-4\sin a\cos a}{\sin a\cos a}=-4$
\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)(với α là góc nhọn)
\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(=sin^4\alpha+2sin^2\alpha.cos^2\alpha+cos^2\alpha\)
\(=\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
1/ Tính giá trị biểu thức:
A = \(cos^6\alpha+sin^6\alpha+3sin^2\alpha.cos^2\alpha\)
2/ Cho △ABC viết BC = 20cm, ∠ABC = \(40^o\), ∠ACB = \(30^o\). Tính AB (Làm tròn đến chữ số thập phân thứ 2)
Bài 1:
Ta có: \(A=\sin^6\alpha+3\cdot\sin^2\alpha\cdot\cos^2\alpha+\cos^6\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3-3\cdot\sin^2\alpha\cdot\cos\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)
\(=1^3\)
=1
Biết tanB=2 tính
\(A=\frac{2sin\alpha+cos\alpha}{3sin\alpha-4cos\alpha}\)
\(B=sin^2\alpha+2sin\alpha.cos\alpha-3cos^2\alpha\)
\(C=\frac{sin^2\alpha-sin\alpha.cos\alpha-cos^2\alpha}{2sin\alpha.cos\alpha}\)
Giúp mik với, ai làm xong mik sẽ tick cho cảm ơn nhiều
hỏi tí chớ \(TanB=2\) hay \(Tan\alpha=2\) vậy .
Tính
A= \(\frac{2sin\alpha+cos\alpha}{3sin\alpha-4cos\alpha}\)
B= \(sin^2\alpha+2sin\alpha.cos\alpha-3cos^3\alpha\)
C= \(\frac{sin^2\alpha-sin\alpha.cos\alpha-cos^2\alpha}{2sin\alpha.cos\alpha}\)
Giúp mik với, ai làm được mik sẽ tick cho. Cảm ơn trước nhé
Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.
Lời giải:
Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.
----------
\(B=\sin ^2a+\sin 2a-3\cos ^3a\)
----------
\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)
\(=\frac{\tan a-1-\cot a}{2}\)
6. CM đẳng thức
a) \(\dfrac{sin^3\alpha+cos^3\alpha}{sin\alpha+cos\alpha}=1-sin\alpha.cos\alpha\)
c) sin4α + cos4α - sin6α - cos6α = sin2α . cos2α
b) \(\dfrac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}=\dfrac{tan\alpha-1}{tan\alpha+1}\)
a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)
=(sina+cosa)^2-3*sina*cosa
=sin^2a+cos^2a-sina*cosa
=1-sina*cosa=VP
c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)
=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a
=sin^2a*cos^2a=VP
Sin² α+ cos^4 α + 2sin α . cos^2 α
Sin^6 α – sin^6 α + 3sin α . Cos^2 α
Rút gọn
\(1,D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)
\(2,E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)
\(3,F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
Bài 1 :
\(D=cos^220^0+cos^230^0+cos^240^0+cos^250^0+cos^260^0+cos^270^0\)
\(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)
\(=1+1+1=3\)
Bài 2 :
\(E=sin^25^0+sin^225^0+sin^245^0+sin^265^0+sin^285^0\)
\(=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
Bài 3 :
\(F=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(=1-3sin^2\alpha.cos^2\alpha+3sin^2a.cos^2\alpha\)
\(=1\)