cho a,b,c là các số không âm và a+b+c=1. chứng minh rằng:\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1< 3,5}\)
cho a,b,c là các số không âm và a+b+c=1.chứng minh rằng:\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
Ta có \(\sqrt{1+a}\le\frac{a\:+1+1}{2}=\frac{a+2}{2}\)
Tương tự \(\sqrt{1+b}\le\frac{b+2}{2}\)
\(\sqrt{1+C}\le\frac{c+2}{2}\)
Từ đó ta có \(\sqrt{1+a}+\sqrt{1+b}+\sqrt{1+c}\)<= \(\frac{a+b+c+6}{2}=\frac{7}{2}\)= 3,5
Bạn alibaba nguyễn hình như đọc không kĩ đề thì phải, ở đây ng ta bảo chứng minh bé hơn đâu phải bé hơn hoặc bằng đâu mà bạn dừng lại ở đó không giải tiếp ? ĐOạn sau các bạn làm như này nhé :
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+1=1\\b+1=1\\c+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)(Vô lý)
vậy dấu "=" không xảy ra => \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
Câu 4: Cho a,b,c là các số không âm và a+b+c=1. Chứng minh: \(\sqrt{a+1}\)+ \(\sqrt{b+1}\) + \(\sqrt{c+1}\) < 3,5
\(A=\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\Rightarrow A^2=\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(\sqrt{a+1}^2+\sqrt{b+1}^2+\sqrt{c+1}^2\right)\left(bunhiacopxki\right)\)
\(\Rightarrow A^2\le\left(1+1+1\right)\left(a+1+b+1+c+1\right)\)
\(\Rightarrow A^2\le3\left(a+b+c+3\right)=3.4=12\Rightarrow A\le\sqrt{12}< 3,5\left(dpcm\right)\)
Cho các số thực a, b, c, d không âm và có tổng là 3. Chứng minh rằng:
\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{d^3+1}+d\sqrt{a^3+1}\le5\)
Cho các số thực a, b, c, d không âm và có tổng là 3. Chứng minh rằng:
\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{d^3+1}+d\sqrt{a^3+1}\le5\)
Chứng minh rằng với mọi a,b,c là các số nguyên không âm:
\(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)
bài này hay đấy
Áp dụng BĐT Cô-si cho 3 số không âm, ta có :
\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)
Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )
đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )
do a,b,c là số nguyên
Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng
Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1
Ta có : VT ( 1 )
\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)
\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)
\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)
\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)
Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)
Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)
suy ra đpcm
1) chứng minh rằng nếu a;b;c là các số ko âm và b là số trung bình cộng của a và c thì ta có \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{c}+\sqrt{a}}\)
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
Cho ba số thực không âm \(a;b;c\) và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng :
\(\sqrt{\left(a+b+1\right).\left(c+2\right)}+\sqrt{\left(b+c+1\right).\left(a+2\right)}+\sqrt{\left(c+a+1\right).\left(b+2\right)}\ge9\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn rất nhiều ạ!
giúp đỡ tôi với.
1)cho a,b,c là các số thực không âm. chứng minh rằng : a+b+c = \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\Leftrightarrow a=b=c\)
2)so sánh A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{24}}+\frac{1}{\sqrt{25}}\) và 5
1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
áp dụng BĐT cô shi cho 2 số thực dương ta có:
\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)
cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
↔\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
dấu = xảy ra khi a=b=c
vậy...
b)ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)→\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)
\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)
vậy.....