Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Hoan
Xem chi tiết
nguyen thi ngoc
10 tháng 8 2016 lúc 14:35

a^2+24là số chính phương ta có từ 2^1đến 2^4 loại (nhỏ hơn 24)

TA CÓ :2^5=32

2^6=64

2^7=128

2^8=256

2^9=512

2^10=1024

2^11=2048

vv...

vậy ta cộng lần lượt 24 với 2^5, 2^6TỚI 2^12 Đi

vậy là mình cũng tìm ra 32

32^2+24=1048=2^11

!

Nguyễn Ngọc Hoan
11 tháng 8 2016 lúc 11:49

tại sao 2^11= 2048  Mà bên dưới 32^2+24 =1048 =2^11

Lê Nguyên Hạo
Xem chi tiết
Đặng Quỳnh Ngân
10 tháng 8 2016 lúc 18:23

a = 1 stupid thế  

Lê Nguyên Hạo
10 tháng 8 2016 lúc 19:06

Đặng Quỳnh Ngân tui cần cách giải chứ cái đó tui cũng biết 

Đặng Quỳnh Ngân
11 tháng 8 2016 lúc 13:21

giải thì tui biết mà trình bày thì ngu

Hồ Thị Minh Ngọc
Xem chi tiết
Lê Nguyên Hạo
17 tháng 8 2016 lúc 15:28

1

Nguyễn Huy Tú
17 tháng 8 2016 lúc 15:29

a = 10

Kẹo dẻo
17 tháng 8 2016 lúc 15:29

Vi a\(^2\) + 24 = scp

Mà 24 là số chính phương => a = 1

Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

ak123
Xem chi tiết
ak123
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 21:34

Đặt \(A=2^4+2^7+2^n=144+2^n\)

Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow144+2^{2k}=m^2\)

\(\Rightarrow144=m^2-\left(2^k\right)^2\)

\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)

Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)

Hoàng Ngọc Anh
25 tháng 1 2022 lúc 19:50

tôi thấy  k=8^2,8^3,8^4.............

Khách vãng lai đã xóa
cfefwe
Xem chi tiết