Cho tam giác ABC vuông tại A, biết AB= 6cm. AC = 8cm. Gọi E. F. G lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác AEGF là hình chữ nhật. b) Hãy tỉnh diện tích hình chữ nhật AEGF. c) Tủ E kẻ EM vuông góc với BG. Tỉnh EM
Cho tam giác ABC vuông tại A, biết AB= 6cm. AC = 8cm. Gọi E. F. G lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác AEGF là hình chữ nhật. b) Hãy tỉnh diện tích hình chữ nhật AEGF. c) Tủ E kẻ EM vuông góc với BG. Tỉnh EM
Bài 1: Cho tam giác ABC vuông ở A. Gọi E,G,F lần lượt là trung điểm của AB, BC, AC. Từ E kẻ đường thẳng song song với BF, đường thẳng này cắt GF tại I. a) Tứ giác AEGF là hình gì?Vì sao? b) Chứng minh tứ giác BEIF là hình bình hành. c) Chứng minh tứ giác AGCI là hình thoi. d) Tìm điều kiện của tam giác ABC để tứ giác AGCI là hình vuông.
Các bạn giúp mình bài này nhé mình đang cần gấp. Cảm ơn các bạn nhiều.
a/
Ta có
FA=FC; GB=GC => GF là đường trung bình của tg ABC
=> GF//AB Mà \(AB\perp AC\)
\(\Rightarrow GF\perp AC\)
=> AEGF là hình thang vuông tại A và F
b/
EI//BF (gt)
GF//AB => FI//BE
=> BEIF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Ta có GF là đường trung bình của tg ABC \(\Rightarrow GF=\dfrac{1}{2}AB\)
BEIF là hbh (cmt) =>FI=EB
Mà \(EA=EB=\dfrac{1}{2}AB\)
=> GF=FI
Ta có
FA=FC
=> AGCI là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Mà \(GF\perp AC\Rightarrow GI\perp AC\)
=> AGCI là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)
d/
Để AGCI là hình vuông \(\Rightarrow AG\perp BC\) => AG là đường cao của tg ABC
Mà GB=GC => AG là đường trung tuyến của tg ABC
=> tg ABC là tg cân tại A (Tam giác có đường cao và đồng thời là đường trung tuyến là tg cân)
Mà \(\widehat{A}=90^o\) (gt)
=> Đk để AGCI là hình vuông thì tg ABC phải là tg vuông cân tại A
Cho tam giác ABC góc A=90 độ.Gọi E F G là trung điểm của AB,BC,AC
a) tứ giác AEGF là hình gì?
b) AB=6cm,AC=8cm.Tính độ dài AG
a: Xét ΔCAB có CF/CA=CG/CB
nên FG//AB và FG=AB/2
=>FG//AE và FG=AE
=>AEGF là hình bình hành
mà góc FAE=90 độ
nên AEGF là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AG=BC/2=5cm
4. Cho tam giác ABC góc A = 90 độ . Gọi E,G,F là trung điểm của AB, BC,AC . Từ E kẻ đường // vs BF , đường thẳng này cắt GF tại I
a) tứ giác AEGF là hình j
b) cm tứ giác BEIF là hbh
c)cm tứ giác AGCI là hình thoi
d) tìm điều kiện để tứ giác AGCI là hình vuông
a: Xét ΔABC có
G là trung điểm của BC
F là trung điểm của AC
DO đó: FG là đường trung bình
=>FG//AE và FG=AE
=>AEGF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEGF là hình chữ nhật
b: Xét tứ giác BEIF có
IF//BE
EI//BF
Do đó: BEIF là hình bình hành
c: Ta có: EIFB là hình bình hành
nên FI//EB và FI=EB
=>FI=1/2IG
=>F là trung điểm của IG
Xét tứ giác CIAG có
F là trung điểm của AC
F la trung điểm của GI
Do đó: CIAG là hình bình hành
mà GA=GC
nên CIAG là hình thoi
Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.
Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.
a) Tứ giác AEGF là hình gì ?
b) Chứng minh tứ giac BEIF là hình bình hành
c) Chứng minh tứ giác AGCI là hình thoi
d) Tìm điều kiện để tứ giác AGCI là hình vuông.
Bài 1 : Ta có MB = MC ( gt) , ME // AC => E là trung điểm của AB ( đường thẳng qua trung điểm cạnh tam giác . . )
MB = MC ( gt) , MF // AB ⇒ F là trung điểm của AC ( đường thẳng qua trung điểm cạnh tam giác . . . )
⇒ EF là đường trung bình của tam giác ABC . ⇒ EF // BC Vậy tứ giác BCEF là hình thang
. Mặt khác góc B = góc C ( tam giác ABC cân – gt) ⇒ Tứ giác BCEF là hình thang cân.
Bài 2: a/ chứng minh tứ giác có 2 cặp cạnh đối song song ( gt) nên AEGF là hình bình hành.
tứ giác có góc A = 900 ( gt)
Vậy AEGF là hình chữ nhật
b/ vì GF // AB ⇒ FI // EB
EI // BF (gt) ⇒ BEIF là hình bình hành ( 2 cặp cạnh đối // )
c/ Vì AF = FC , GB = GC ( gt) ⇒ GF là đường trung bình của tam giác ABC ⇒ GF = BE = 1/2 AB ⇒ GF = FI ( vì FI = BE do BEIF là hình bình hành)
⇒ GF // AB mà AB ⊥ AC ⇒ GI ⊥ AC tại F
Vậy AGCI là hình thoi ( hai đ/chéo vuông góc tại trung điểm mỗi đường )
d/ Để AGCI là hình vuông thì AC = GI . mà GI = 2GF = 2 EB = AB Vậy AGCI là hình vuông thì AC = AB ⇒ Tam giác ABC vuông cân tại A.
cho tam giác ABC có góc A= 90 , Gọi E,G,F, Là trung điểm của AB,AC,BC. Từ E kẻ đường song song với BF, đường thẳng náy cắt GF tại I.
a)Tứ giác AEGF là hình gì
b)cm tứ giác BEIF là hình bình hành
c0 Cm tứ giác AGCI LÀ HÌNH THOI
d) tÌM điều iện để tứ giác AGCI là hinh vuông
a,b,cCâu hỏi của Đỗ Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
d)
Theo c ta có: AGCI là hình thoi
=> Để AGCI là hình vuông
=> ^AGC = 1v
=> AG vuông góc BC
=> AG là đường cao của tam giác ABC
mà AG là đương trung tuyến tam giác ABC ( vì G là trung điểm BC )
=> Tam giác ABC cân tại A
Vậy tam giác ABC vuông cân tại A thì tứ giác AGCI là hình vuông.
Cho tam giác ABC vuông tại A . Gọi M , N, P lần lượt là trung điểm của AB; AC và BC. Hỏi tứ giác AMPN là hình gì? Chọn khẳng định đúng nhất?
A. Hình bình hành
B. Hình thang cân
C. Hình thang vuông
D. Hình chữ nhật
* Ta có: M và P lần lượt là trung điểm của AB và BC nên MP là đường trung bình của tam giác.
Từ (1) và (2)suy ra: MP = AN .
* Xét tứ giác AMPN có: MP// AN ( vì MP // AC) và MP = AN
Suy ra: tứ giác AMPN là hình bình hành.
* Lại có ∠ B A C = 90 o ( giả thiết)
Suy ra: tứ giác AMPN là hình chữ nhật.
Chọn đáp án D
Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân. Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I. a) Tứ giác AEGF là hình gì
b) Chứng minh tứ giac BEIF là hình bình hành
c) Chứng minh tứ giác AGCI là hình thoi
d) Tìm điều kiện để tứ giác AGCI là hình vuông.
Bài 2.
-Hình bn tự vẽ nhé!
Bài làm:
a, Có F là trung điểm của AC (gt)
\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC ta có:
E là trung điểm của AB (gt)
G là trung điểm của BC (gt)
\(\Rightarrow\)EG là đường trung bình của tam giác ABC
\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)
Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.
mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.
AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)
mà EI song song với BF (gt) (4)
Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.
b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)
mà AE=EB (E là trung điểm của AB)
\(\Rightarrow\)GF=FI.
Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)
\(\Rightarrow\)AGCI là hình bình hành.
mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi
c, Theo b, ta có: AGCI là hình thoi
Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.
Khi đó AG là đường cao của tam giác ABC
Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A
mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I ké đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E. Khẳng định nào sau đây là sai?
A. Tam giác BDI cân tại D.
B. Tứ giác BIEC là hình thang.
C. Tứ giác BDIC là hình thang.
D. Tứ giác BDEC là hình thang cân
cho tam giác ABC vuông tại A (AB> AC )
GỌI E,F,G LẦN LƯỢT LÀ TRUNG ĐIỂM CỦA AB,BC VÀ AC
A) CHỨNG MINH TỨ GIÁC AEFG LÀ HÌNH CHỮ NHẬT
B) CHỨNG MINH TỨ GICS ABGG LÀ HÌNH THANG
C) VỚI ĐIỀU KIỆN NÀO CỦA TAM GIÁC VUUOONG ABC THÌ TỨ GIÁC EBCG LÀ HÌNH THANG CÂN