Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Võ Văn Hùng

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân. Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I. a) Tứ giác AEGF là hình gì

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

 

Nguyễn thị lan anh
14 tháng 12 2018 lúc 22:38

Bài 2.

-Hình bn tự vẽ nhé!

Bài làm:

a, Có F là trung điểm của AC (gt)

\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)

Xét tam giác ABC ta có:

E là trung điểm của AB (gt)

G là trung điểm của BC (gt)

\(\Rightarrow\)EG là đường trung bình của tam giác ABC

\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)

Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.

mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.

AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)

mà EI song song với BF (gt) (4)

Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.

b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)

mà AE=EB (E là trung điểm của AB)

\(\Rightarrow\)GF=FI.

Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)

\(\Rightarrow\)AGCI là hình bình hành.

mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi

c, Theo b, ta có: AGCI là hình thoi

Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.

Khi đó AG là đường cao của tam giác ABC

Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A

mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.


Các câu hỏi tương tự
Khánh Linh Đỗ
Xem chi tiết
Đào Phương Duyên
Xem chi tiết
Dĩ Mạc
Xem chi tiết
Bỉnh Yumi Bướng
Xem chi tiết
Đỗ Thị Kim Anh
Xem chi tiết
LIÊN
Xem chi tiết
Duyên Lương
Xem chi tiết
Nguyễn Hiền Thục
Xem chi tiết
Phụng Trần
Xem chi tiết